Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Reinforcement learning, fast and slow
Deep reinforcement learning (RL) methods have driven impressive advances in artificial
intelligence in recent years, exceeding human performance in domains ranging from Atari to …
intelligence in recent years, exceeding human performance in domains ranging from Atari to …
A social path to human-like artificial intelligence
Traditionally, cognitive and computer scientists have viewed intelligence solipsistically, as a
property of unitary agents devoid of social context. Given the success of contemporary …
property of unitary agents devoid of social context. Given the success of contemporary …
Foundational challenges in assuring alignment and safety of large language models
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …
language models (LLMs). These challenges are organized into three different categories …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Shared experience actor-critic for multi-agent reinforcement learning
Exploration in multi-agent reinforcement learning is a challenging problem, especially in
environments with sparse rewards. We propose a general method for efficient exploration by …
environments with sparse rewards. We propose a general method for efficient exploration by …
A review of cooperation in multi-agent learning
Cooperation in multi-agent learning (MAL) is a topic at the intersection of numerous
disciplines, including game theory, economics, social sciences, and evolutionary biology …
disciplines, including game theory, economics, social sciences, and evolutionary biology …
Evolutionary reinforcement learning: A survey
Reinforcement learning (RL) is a machine learning approach that trains agents to maximize
cumulative rewards through interactions with environments. The integration of RL with deep …
cumulative rewards through interactions with environments. The integration of RL with deep …
[HTML][HTML] A survey on multi-agent reinforcement learning and its application
Multi-agent reinforcement learning (MARL) has been a rapidly evolving field. This paper
presents a comprehensive survey of MARL and its applications. We trace the historical …
presents a comprehensive survey of MARL and its applications. We trace the historical …
Social diversity and social preferences in mixed-motive reinforcement learning
Recent research on reinforcement learning in pure-conflict and pure-common interest
games has emphasized the importance of population heterogeneity. In contrast, studies of …
games has emphasized the importance of population heterogeneity. In contrast, studies of …
Spurious normativity enhances learning of compliance and enforcement behavior in artificial agents
How do societies learn and maintain social norms? Here we use multiagent reinforcement
learning to investigate the learning dynamics of enforcement and compliance behaviors …
learning to investigate the learning dynamics of enforcement and compliance behaviors …