Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a
costly process, a model can instead be trained with more accessible synthetic data and …

ibot: Image bert pre-training with online tokenizer

J Zhou, C Wei, H Wang, W Shen, C **e, A Yuille… - arxiv preprint arxiv …, 2021 - arxiv.org
The success of language Transformers is primarily attributed to the pretext task of masked
language modeling (MLM), where texts are first tokenized into semantically meaningful …

Understanding the robustness in vision transformers

D Zhou, Z Yu, E **e, C **ao… - International …, 2022 - proceedings.mlr.press
Recent studies show that Vision Transformers (ViTs) exhibit strong robustness against
various corruptions. Although this property is partly attributed to the self-attention …

Are transformers more robust than cnns?

Y Bai, J Mei, AL Yuille, C **e - Advances in neural …, 2021 - proceedings.neurips.cc
Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating
competitive performance on a broad range of visual benchmarks, recent works also argue …

Transformers in vision: A survey

S Khan, M Naseer, M Hayat, SW Zamir… - ACM computing …, 2022 - dl.acm.org
Astounding results from Transformer models on natural language tasks have intrigued the
vision community to study their application to computer vision problems. Among their salient …

Transformers in remote sensing: A survey

AA Aleissaee, A Kumar, RM Anwer, S Khan… - Remote Sensing, 2023 - mdpi.com
Deep learning-based algorithms have seen a massive popularity in different areas of remote
sensing image analysis over the past decade. Recently, transformer-based architectures …

Medsegdiff-v2: Diffusion-based medical image segmentation with transformer

J Wu, W Ji, H Fu, M Xu, Y **, Y Xu - … of the AAAI Conference on Artificial …, 2024 - ojs.aaai.org
The Diffusion Probabilistic Model (DPM) has recently gained popularity in the field of
computer vision, thanks to its image generation applications, such as Imagen, Latent …

Msft-yolo: Improved yolov5 based on transformer for detecting defects of steel surface

Z Guo, C Wang, G Yang, Z Huang, G Li - Sensors, 2022 - mdpi.com
With the development of artificial intelligence technology and the popularity of intelligent
production projects, intelligent inspection systems have gradually become a hot topic in the …