A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies

A Thelen, X Zhang, O Fink, Y Lu, S Ghosh… - Structural and …, 2022 - Springer
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …

Self-supervised learning of graph neural networks: A unified review

Y **e, Z Xu, J Zhang, Z Wang… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …

Exploring the potential of large language models (llms) in learning on graphs

Z Chen, H Mao, H Li, W **, H Wen, X Wei… - ACM SIGKDD …, 2024 - dl.acm.org
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …

Graphmae: Self-supervised masked graph autoencoders

Z Hou, X Liu, Y Cen, Y Dong, H Yang, C Wang… - Proceedings of the 28th …, 2022 - dl.acm.org
Self-supervised learning (SSL) has been extensively explored in recent years. Particularly,
generative SSL has seen emerging success in natural language processing and other …

How powerful are spectral graph neural networks

X Wang, M Zhang - International conference on machine …, 2022 - proceedings.mlr.press
Abstract Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on
graph signal filters. Some models able to learn arbitrary spectral filters have emerged …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods

D Lim, F Hohne, X Li, SL Huang… - Advances in …, 2021 - proceedings.neurips.cc
Many widely used datasets for graph machine learning tasks have generally been
homophilous, where nodes with similar labels connect to each other. Recently, new Graph …

Graph learning: A survey

F **a, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Ogb-lsc: A large-scale challenge for machine learning on graphs

W Hu, M Fey, H Ren, M Nakata, Y Dong… - arxiv preprint arxiv …, 2021 - arxiv.org
Enabling effective and efficient machine learning (ML) over large-scale graph data (eg,
graphs with billions of edges) can have a great impact on both industrial and scientific …

Masked label prediction: Unified message passing model for semi-supervised classification

Y Shi, Z Huang, S Feng, H Zhong, W Wang… - arxiv preprint arxiv …, 2020 - arxiv.org
Graph neural network (GNN) and label propagation algorithm (LPA) are both message
passing algorithms, which have achieved superior performance in semi-supervised …