A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …

A review of android malware detection approaches based on machine learning

K Liu, S Xu, G Xu, M Zhang, D Sun, H Liu - IEEE access, 2020 - ieeexplore.ieee.org
Android applications are develo** rapidly across the mobile ecosystem, but Android
malware is also emerging in an endless stream. Many researchers have studied the …

A comprehensive survey on machine learning approaches for malware detection in IoT-based enterprise information system

A Gaurav, BB Gupta, PK Panigrahi - Enterprise Information …, 2023 - Taylor & Francis
ABSTRACT The Internet of Things (IoT) is a relatively new technology that has piqued
academics' and business information systems' attention in recent years. The Internet of …

Heterogeneous network representation learning: A unified framework with survey and benchmark

C Yang, Y **ao, Y Zhang, Y Sun… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Since real-world objects and their interactions are often multi-modal and multi-typed,
heterogeneous networks have been widely used as a more powerful, realistic, and generic …

GDroid: Android malware detection and classification with graph convolutional network

H Gao, S Cheng, W Zhang - Computers & Security, 2021 - Elsevier
The dramatic increase in the number of malware poses a serious challenge to the Android
platform and makes it difficult for malware analysis. In this paper, we propose a novel …

MLDroid—framework for Android malware detection using machine learning techniques

A Mahindru, AL Sangal - Neural Computing and Applications, 2021 - Springer
This research paper presents MLDroid—a web-based framework—which helps to detect
malware from Android devices. Due to increase in the popularity of Android devices …

Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version)

L Onwuzurike, E Mariconti, P Andriotis… - ACM Transactions on …, 2019 - dl.acm.org
As Android has become increasingly popular, so has malware targeting it, thus motivating
the research community to propose different detection techniques. However, the constant …

Iot-based android malware detection using graph neural network with adversarial defense

R Yumlembam, B Issac, SM Jacob… - IEEE Internet of Things …, 2022 - ieeexplore.ieee.org
Since the Internet of Things (IoT) is widely adopted using Android applications, detecting
malicious Android apps is essential. In recent years, Android graph-based deep learning …

[HTML][HTML] An in-depth review of machine learning based Android malware detection

A Muzaffar, HR Hassen, MA Lones, H Zantout - Computers & Security, 2022 - Elsevier
It is estimated that around 70% of mobile phone users have an Android device. Due to this
popularity, the Android operating system attracts a lot of malware attacks. The sensitive …