Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives

J Li, J Chen, Y Tang, C Wang, BA Landman… - Medical image …, 2023 - Elsevier
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …

Seggpt: Segmenting everything in context

X Wang, X Zhang, Y Cao, W Wang, C Shen… - arxiv preprint arxiv …, 2023 - arxiv.org
We present SegGPT, a generalist model for segmenting everything in context. We unify
various segmentation tasks into a generalist in-context learning framework that …

Implicit neural representation in medical imaging: A comparative survey

A Molaei, A Aminimehr, A Tavakoli… - Proceedings of the …, 2023 - openaccess.thecvf.com
Implicit neural representations (INRs) have emerged as a powerful paradigm in scene
reconstruction and computer graphics, showcasing remarkable results. By utilizing neural …

Generalist vision foundation models for medical imaging: A case study of segment anything model on zero-shot medical segmentation

P Shi, J Qiu, SMD Abaxi, H Wei, FPW Lo, W Yuan - Diagnostics, 2023 - mdpi.com
Medical image analysis plays an important role in clinical diagnosis. In this paper, we
examine the recent Segment Anything Model (SAM) on medical images, and report both …

Graph-based deep learning for medical diagnosis and analysis: past, present and future

D Ahmedt-Aristizabal, MA Armin, S Denman, C Fookes… - Sensors, 2021 - mdpi.com
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …

DUNet: A deformable network for retinal vessel segmentation

Q **, Z Meng, TD Pham, Q Chen, L Wei… - Knowledge-Based Systems, 2019 - Elsevier
Automatic segmentation of retinal vessels in fundus images plays an important role in the
diagnosis of some diseases such as diabetes and hypertension. In this paper, we propose …

Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation

MZ Alom, M Hasan, C Yakopcic, TM Taha… - arxiv preprint arxiv …, 2018 - arxiv.org
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-
art performance in the last few years. More specifically, these techniques have been …

Cat-seg: Cost aggregation for open-vocabulary semantic segmentation

S Cho, H Shin, S Hong, A Arnab… - Proceedings of the …, 2024 - openaccess.thecvf.com
Open-vocabulary semantic segmentation presents the challenge of labeling each pixel
within an image based on a wide range of text descriptions. In this work we introduce a …

Image-Based malware classification using ensemble of CNN architectures (IMCEC)

D Vasan, M Alazab, S Wassan, B Safaei, Q Zheng - Computers & Security, 2020 - Elsevier
Both researchers and malware authors have demonstrated that malware scanners are
unfortunately limited and are easily evaded by simple obfuscation techniques. This paper …