Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder
the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have …
the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have …
Rechargeable metal-sulfur batteries: key materials to mechanisms
Rechargeable metal-sulfur batteries are considered promising candidates for energy
storage due to their high energy density along with high natural abundance and low cost of …
storage due to their high energy density along with high natural abundance and low cost of …
Visualizing interfacial collective reaction behaviour of Li–S batteries
Benefiting from high energy density (2,600 Wh kg− 1) and low cost, lithium–sulfur (Li–S)
batteries are considered promising candidates for advanced energy-storage systems …
batteries are considered promising candidates for advanced energy-storage systems …
Establishing reaction networks in the 16-electron sulfur reduction reaction
The sulfur reduction reaction (SRR) plays a central role in high-capacity lithium sulfur (Li-S)
batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple …
batteries. The SRR involves an intricate, 16-electron conversion process featuring multiple …
Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics
The catalytic conversion of lithium polysulfides is a promising way to inhibit the shuttling
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …
effect in Li–S batteries. However, the mechanism of such catalytic systems remains unclear …
Recent progress for concurrent realization of shuttle‐inhibition and dendrite‐free lithium–sulfur batteries
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …
Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries
Catalytic conversion of polysulfides is regarded as a crucial approach to enhancing kinetics
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity …
Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li–S batteries
J Wu, T Ye, Y Wang, P Yang, Q Wang, W Kuang… - ACS …, 2022 - ACS Publications
Because of their high energy density, low cost, and environmental friendliness, lithium–
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
sulfur (Li–S) batteries are one of the potential candidates for the next-generation energy …
Optimizing the p charge of S in p-block metal sulfides for sulfur reduction electrocatalysis
Understanding sulfur conversion chemistry is key to the development of sulfur-based high-
energy-density batteries. However, unclear relationships between the electronic structure of …
energy-density batteries. However, unclear relationships between the electronic structure of …
Physicochemical confinement effect enables high-performing zinc–iodine batteries
M Liu, Q Chen, X Cao, D Tan, J Ma… - Journal of the American …, 2022 - ACS Publications
Zinc–iodine batteries are promising energy storage devices with the unique features of
aqueous electrolytes and safer zinc. However, their performances are still limited by the …
aqueous electrolytes and safer zinc. However, their performances are still limited by the …