A comprehensive review on deep learning based remote sensing image super-resolution methods
Satellite imageries are an important geoinformation source for different applications in the
Earth Science field. However, due to the limitation of the optic and sensor technologies and …
Earth Science field. However, due to the limitation of the optic and sensor technologies and …
Real-world single image super-resolution: A brief review
Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR)
image from a low-resolution (LR) observation, has been an active research topic in the area …
image from a low-resolution (LR) observation, has been an active research topic in the area …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
Srformer: Permuted self-attention for single image super-resolution
Previous works have shown that increasing the window size for Transformer-based image
super-resolution models (eg, SwinIR) can significantly improve the model performance but …
super-resolution models (eg, SwinIR) can significantly improve the model performance but …
Learning enriched features for fast image restoration and enhancement
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …
image content. Numerous applications demand effective image restoration, eg …
Scale-mae: A scale-aware masked autoencoder for multiscale geospatial representation learning
Large, pretrained models are commonly finetuned with imagery that is heavily augmented to
mimic different conditions and scales, with the resulting models used for various tasks with …
mimic different conditions and scales, with the resulting models used for various tasks with …
Multi-stage progressive image restoration
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …
contextualized information while recovering images. In this paper, we propose a novel …
[HTML][HTML] Medical image super-resolution for smart healthcare applications: A comprehensive survey
The digital transformation in healthcare, propelled by the integration of deep learning
models and the Internet of Things (IoT), is creating unprecedented opportunities for …
models and the Internet of Things (IoT), is creating unprecedented opportunities for …
Image super-resolution: A comprehensive review, recent trends, challenges and applications
Super resolution (SR) is an eminent system in the field of computer vison and image
processing to improve the visual perception of the poor-quality images. The key objective of …
processing to improve the visual perception of the poor-quality images. The key objective of …
A robust volumetric transformer for accurate 3D tumor segmentation
We propose a Transformer architecture for volumetric segmentation, a challenging task that
requires kee** a complex balance in encoding local and global spatial cues, and …
requires kee** a complex balance in encoding local and global spatial cues, and …