Deep learning-based electroencephalography analysis: a systematic review

Y Roy, H Banville, I Albuquerque… - Journal of neural …, 2019 - iopscience.iop.org
Context. Electroencephalography (EEG) is a complex signal and can require several years
of training, as well as advanced signal processing and feature extraction methodologies to …

A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

F Lotte, L Bougrain, A Cichocki, M Clerc… - Journal of neural …, 2018 - iopscience.iop.org
Objective. Most current electroencephalography (EEG)-based brain–computer interfaces
(BCIs) are based on machine learning algorithms. There is a large diversity of classifier …

[PDF][PDF] Study of variants of extreme learning machine (ELM) brands and its performance measure on classification algorithm

JS Manoharan - Journal of Soft Computing Paradigm (JSCP), 2021 - scholar.archive.org
Recently, the feed-forward neural network is functioning with slow computation time and
increased gain. The weight vector and biases in the neural network can be tuned based on …

Non-iterative and fast deep learning: Multilayer extreme learning machines

J Zhang, Y Li, W **ao, Z Zhang - Journal of the Franklin Institute, 2020 - Elsevier
In the past decade, deep learning techniques have powered many aspects of our daily life,
and drawn ever-increasing research interests. However, conventional deep learning …

DepHNN: a novel hybrid neural network for electroencephalogram (EEG)-based screening of depression

G Sharma, A Parashar, AM Joshi - Biomedical signal processing and …, 2021 - Elsevier
Depression is a psychological disorder characterized by the continuous occurrence of bad
mood state. It is critical to understand that this disorder is severely affecting people of …

Automated depression detection using deep representation and sequence learning with EEG signals

B Ay, O Yildirim, M Talo, UB Baloglu, G Aydin… - Journal of medical …, 2019 - Springer
Depression affects large number of people across the world today and it is considered as
the global problem. It is a mood disorder which can be detected using …

Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition

R Prasad, RC Deo, Y Li, T Maraseni - Geoderma, 2018 - Elsevier
Soil moisture (SM) is an essential component of the environmental and the agricultural
system. Continuous monitoring and forecasting of soil moisture is a desirable strategy to …

Predicting uniaxial compressive strength from drilling variables aided by hybrid machine learning

S Davoodi, M Mehrad, DA Wood… - International Journal of …, 2023 - Elsevier
Awareness of uniaxial compressive strength (UCS) as a key rock formation parameter for the
design and development of gas and oil field plays. It plays an essential role in the selection …

Deep learning in EEG: Advance of the last ten-year critical period

S Gong, K **ng, A Cichocki, J Li - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning has achieved excellent performance in a wide range of domains, especially
in speech recognition and computer vision. Relatively less work has been done for …

Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions

A Kalantari, A Kamsin, S Shamshirband, A Gani… - Neurocomputing, 2018 - Elsevier
The explosive growth of data in volume, velocity and diversity that are produced by medical
applications has contributed to abundance of big data. Current solutions for efficient data …