Social interactions for autonomous driving: A review and perspectives

W Wang, L Wang, C Zhang, C Liu… - Foundations and Trends …, 2022 - nowpublishers.com
No human drives a car in a vacuum; she/he must negotiate with other road users to achieve
their goals in social traffic scenes. A rational human driver can interact with other road users …

Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions

S Atakishiyev, M Salameh, H Yao, R Goebel - IEEE Access, 2024 - ieeexplore.ieee.org
Autonomous driving has achieved significant milestones in research and development over
the last two decades. There is increasing interest in the field as the deployment of …

Motionlm: Multi-agent motion forecasting as language modeling

A Seff, B Cera, D Chen, M Ng, A Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable forecasting of the future behavior of road agents is a critical component to safe
planning in autonomous vehicles. Here, we represent continuous trajectories as sequences …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Argoverse 2: Next generation datasets for self-driving perception and forecasting

B Wilson, W Qi, T Agarwal, J Lambert, J Singh… - arxiv preprint arxiv …, 2023 - arxiv.org
We introduce Argoverse 2 (AV2)-a collection of three datasets for perception and forecasting
research in the self-driving domain. The annotated Sensor Dataset contains 1,000 …

Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction

B Varadarajan, A Hefny, A Srivastava… - … on Robotics and …, 2022 - ieeexplore.ieee.org
Predicting the future behavior of road users is one of the most challenging and important
problems in autonomous driving. Applying deep learning to this problem requires fusing …

Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset

S Ettinger, S Cheng, B Caine, C Liu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As autonomous driving systems mature, motion forecasting has received increasing
attention as a critical requirement for planning. Of particular importance are interactive …

Prediction-uncertainty-aware decision-making for autonomous vehicles

X Tang, K Yang, H Wang, J Wu, Y Qin… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Motion prediction is the fundamental input for decision-making in autonomous vehicles. The
current motion prediction solutions are designed with a strong reliance on black box …

Scene transformer: A unified architecture for predicting multiple agent trajectories

J Ngiam, B Caine, V Vasudevan, Z Zhang… - arxiv preprint arxiv …, 2021 - arxiv.org
Predicting the motion of multiple agents is necessary for planning in dynamic environments.
This task is challenging for autonomous driving since agents (eg vehicles and pedestrians) …

Improving multi-agent trajectory prediction using traffic states on interactive driving scenarios

C Vishnu, V Abhinav, D Roy… - IEEE Robotics and …, 2023 - ieeexplore.ieee.org
Predicting trajectories of multiple agents in interactive driving scenarios such as
intersections, and roundabouts are challenging due to the high density of agents, varying …