Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Modal analysis of fluid flows: An overview
SIMPLE aerodynamic configurations under even modest conditions can exhibit complex
flows with a wide range of temporal and spatial features. It has become common practice in …
flows with a wide range of temporal and spatial features. It has become common practice in …
[BOOK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
[BOOK][B] Dynamic mode decomposition: data-driven modeling of complex systems
The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
Physics-informed dynamic mode decomposition
In this work, we demonstrate how physical principles—such as symmetries, invariances and
conservation laws—can be integrated into the dynamic mode decomposition (DMD). DMD is …
conservation laws—can be integrated into the dynamic mode decomposition (DMD). DMD is …
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
In this work, we explore finite-dimensional linear representations of nonlinear dynamical
systems by restricting the Koopman operator to an invariant subspace spanned by specially …
systems by restricting the Koopman operator to an invariant subspace spanned by specially …
Learning Koopman invariant subspaces for dynamic mode decomposition
Spectral decomposition of the Koopman operator is attracting attention as a tool for the
analysis of nonlinear dynamical systems. Dynamic mode decomposition is a popular …
analysis of nonlinear dynamical systems. Dynamic mode decomposition is a popular …
Data-driven prediction in dynamical systems: recent developments
In recent years, we have witnessed a significant shift toward ever-more complex and ever-
larger-scale systems in the majority of the grand societal challenges tackled in applied …
larger-scale systems in the majority of the grand societal challenges tackled in applied …
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
Optimal sensor and actuator placement is an important unsolved problem in control theory.
Nearly every downstream control decision is affected by these sensor and actuator …
Nearly every downstream control decision is affected by these sensor and actuator …
Data-driven discovery of Koopman eigenfunctions for control
Data-driven transformations that reformulate nonlinear systems in a linear framework have
the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics …
the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics …