Security and privacy challenges of large language models: A survey

BC Das, MH Amini, Y Wu - ACM Computing Surveys, 2025 - dl.acm.org
Large language models (LLMs) have demonstrated extraordinary capabilities and
contributed to multiple fields, such as generating and summarizing text, language …

Traumatic brain injury: progress and challenges in prevention, clinical care, and research

AIR Maas, DK Menon, GT Manley, M Abrams… - The Lancet …, 2022 - thelancet.com
Executive summary Traumatic brain injury (TBI) has the highest incidence of all common
neurological disorders, and poses a substantial public health burden. TBI is increasingly …

[PDF][PDF] DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models.

B Wang, W Chen, H Pei, C **e, M Kang, C Zhang, C Xu… - NeurIPS, 2023 - blogs.qub.ac.uk
Abstract Generative Pre-trained Transformer (GPT) models have exhibited exciting progress
in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the …

Trustworthy llms: a survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, R Guo, H Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

How to dp-fy ml: A practical guide to machine learning with differential privacy

N Ponomareva, H Hazimeh, A Kurakin, Z Xu… - Journal of Artificial …, 2023 - jair.org
Abstract Machine Learning (ML) models are ubiquitous in real-world applications and are a
constant focus of research. Modern ML models have become more complex, deeper, and …

Edge computing with artificial intelligence: A machine learning perspective

H Hua, Y Li, T Wang, N Dong, W Li, J Cao - ACM Computing Surveys, 2023 - dl.acm.org
Recent years have witnessed the widespread popularity of Internet of things (IoT). By
providing sufficient data for model training and inference, IoT has promoted the development …

Machine learning for synthetic data generation: a review

Y Lu, M Shen, H Wang, X Wang, C van Rechem… - arxiv preprint arxiv …, 2023 - arxiv.org
Machine learning heavily relies on data, but real-world applications often encounter various
data-related issues. These include data of poor quality, insufficient data points leading to …

Towards unbounded machine unlearning

M Kurmanji, P Triantafillou, J Hayes… - Advances in neural …, 2023 - proceedings.neurips.cc
Deep machine unlearning is the problem of'removing'from a trained neural network a subset
of its training set. This problem is very timely and has many applications, including the key …

Foundation models and fair use

P Henderson, X Li, D Jurafsky, T Hashimoto… - Journal of Machine …, 2023 - jmlr.org
Existing foundation models are trained on copyrighted material. Deploying these models
can pose both legal and ethical risks when data creators fail to receive appropriate …

Generative adversarial networks in time series: A systematic literature review

E Brophy, Z Wang, Q She, T Ward - ACM Computing Surveys, 2023 - dl.acm.org
Generative adversarial network (GAN) studies have grown exponentially in the past few
years. Their impact has been seen mainly in the computer vision field with realistic image …