Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …
particularly machine learning algorithms, range from initial image processing to high-level …
Deep learning for geophysics: Current and future trends
Recently deep learning (DL), as a new data‐driven technique compared to conventional
approaches, has attracted increasing attention in geophysical community, resulting in many …
approaches, has attracted increasing attention in geophysical community, resulting in many …
SpectralFormer: Rethinking hyperspectral image classification with transformers
Hyperspectral (HS) images are characterized by approximately contiguous spectral
information, enabling the fine identification of materials by capturing subtle spectral …
information, enabling the fine identification of materials by capturing subtle spectral …
Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification
Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …
More diverse means better: Multimodal deep learning meets remote-sensing imagery classification
Classification and identification of the materials lying over or beneath the earth's surface
have long been a fundamental but challenging research topic in geoscience and remote …
have long been a fundamental but challenging research topic in geoscience and remote …
Graph convolutional networks for hyperspectral image classification
Convolutional neural networks (CNNs) have been attracting increasing attention in
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …
hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature …
Hyperspectral image transformer classification networks
Hyperspectral image (HSI) classification is an important task in earth observation missions.
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …
Convolution neural networks (CNNs) with the powerful ability of feature extraction have …
[HTML][HTML] A review on deep learning in UAV remote sensing
Abstract Deep Neural Networks (DNNs) learn representation from data with an impressive
capability, and brought important breakthroughs for processing images, time-series, natural …
capability, and brought important breakthroughs for processing images, time-series, natural …
Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects
Land-use and land-cover change (LULCC) are of importance in natural resource
management, environmental modelling and assessment, and agricultural production …
management, environmental modelling and assessment, and agricultural production …
[HTML][HTML] A survey: Deep learning for hyperspectral image classification with few labeled samples
With the rapid development of deep learning technology and improvement in computing
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …