Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Structured pruning for deep convolutional neural networks: A survey
The remarkable performance of deep Convolutional neural networks (CNNs) is generally
attributed to their deeper and wider architectures, which can come with significant …
attributed to their deeper and wider architectures, which can come with significant …
A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations
H Cheng, M Zhang, JQ Shi - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …
massive model sizes that require significant computational and storage resources. To …
Hrank: Filter pruning using high-rank feature map
Neural network pruning offers a promising prospect to facilitate deploying deep neural
networks on resource-limited devices. However, existing methods are still challenged by the …
networks on resource-limited devices. However, existing methods are still challenged by the …
A review on generative adversarial networks: Algorithms, theory, and applications
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …
however, they have been studied since 2014, and a large number of algorithms have been …
Convolutional neural network pruning with structural redundancy reduction
Z Wang, C Li, X Wang - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Convolutional neural network (CNN) pruning has become one of the most successful
network compression approaches in recent years. Existing works on network pruning …
network compression approaches in recent years. Existing works on network pruning …
Revisiting random channel pruning for neural network compression
Channel (or 3D filter) pruning serves as an effective way to accelerate the inference of
neural networks. There has been a flurry of algorithms that try to solve this practical problem …
neural networks. There has been a flurry of algorithms that try to solve this practical problem …
A survey on generative adversarial networks: Variants, applications, and training
The Generative Models have gained considerable attention in unsupervised learning via a
new and practical framework called Generative Adversarial Networks (GAN) due to their …
new and practical framework called Generative Adversarial Networks (GAN) due to their …
IRPruneDet: efficient infrared small target detection via wavelet structure-regularized soft channel pruning
Infrared Small Target Detection (IRSTD) refers to detecting faint targets in infrared images,
which has achieved notable progress with the advent of deep learning. However, the drive …
which has achieved notable progress with the advent of deep learning. However, the drive …
Filter pruning via geometric median for deep convolutional neural networks acceleration
Previous works utilized" smaller-norm-less-important" criterion to prune filters with smaller
norm values in a convolutional neural network. In this paper, we analyze this norm-based …
norm values in a convolutional neural network. In this paper, we analyze this norm-based …
Chip: Channel independence-based pruning for compact neural networks
Filter pruning has been widely used for neural network compression because of its enabled
practical acceleration. To date, most of the existing filter pruning works explore the …
practical acceleration. To date, most of the existing filter pruning works explore the …