A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations

H Cheng, M Zhang, JQ Shi - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …

A review on generative adversarial networks: Algorithms, theory, and applications

J Gui, Z Sun, Y Wen, D Tao, J Ye - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …

Hrank: Filter pruning using high-rank feature map

M Lin, R Ji, Y Wang, Y Zhang… - Proceedings of the …, 2020 - openaccess.thecvf.com
Neural network pruning offers a promising prospect to facilitate deploying deep neural
networks on resource-limited devices. However, existing methods are still challenged by the …

Structured pruning for deep convolutional neural networks: A survey

Y He, L **ao - IEEE transactions on pattern analysis and …, 2023 - ieeexplore.ieee.org
The remarkable performance of deep Convolutional neural networks (CNNs) is generally
attributed to their deeper and wider architectures, which can come with significant …

Revisiting random channel pruning for neural network compression

Y Li, K Adamczewski, W Li, S Gu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Channel (or 3D filter) pruning serves as an effective way to accelerate the inference of
neural networks. There has been a flurry of algorithms that try to solve this practical problem …

Convolutional neural network pruning with structural redundancy reduction

Z Wang, C Li, X Wang - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Convolutional neural network (CNN) pruning has become one of the most successful
network compression approaches in recent years. Existing works on network pruning …

Filter pruning via geometric median for deep convolutional neural networks acceleration

Y He, P Liu, Z Wang, Z Hu… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Previous works utilized" smaller-norm-less-important" criterion to prune filters with smaller
norm values in a convolutional neural network. In this paper, we analyze this norm-based …

Chip: Channel independence-based pruning for compact neural networks

Y Sui, M Yin, Y **e, H Phan… - Advances in Neural …, 2021 - proceedings.neurips.cc
Filter pruning has been widely used for neural network compression because of its enabled
practical acceleration. To date, most of the existing filter pruning works explore the …

A survey on generative adversarial networks: Variants, applications, and training

A Jabbar, X Li, B Omar - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The Generative Models have gained considerable attention in unsupervised learning via a
new and practical framework called Generative Adversarial Networks (GAN) due to their …

Eagleeye: Fast sub-net evaluation for efficient neural network pruning

B Li, B Wu, J Su, G Wang - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Finding out the computational redundant part of a trained Deep Neural Network (DNN) is the
key question that pruning algorithms target on. Many algorithms try to predict model …