Colloquium: Nonthermal pathways to ultrafast control in quantum materials
Recent progress in utilizing ultrafast light-matter interaction to control the macroscopic
properties of quantum materials is reviewed. Particular emphasis is placed on photoinduced …
properties of quantum materials is reviewed. Particular emphasis is placed on photoinduced …
Quantum algorithms for quantum chemistry and quantum materials science
As we begin to reach the limits of classical computing, quantum computing has emerged as
a technology that has captured the imagination of the scientific world. While for many years …
a technology that has captured the imagination of the scientific world. While for many years …
Evidence for the utility of quantum computing before fault tolerance
Quantum computing promises to offer substantial speed-ups over its classical counterpart for
certain problems. However, the greatest impediment to realizing its full potential is noise that …
certain problems. However, the greatest impediment to realizing its full potential is noise that …
The ITensor software library for tensor network calculations
ITensor is a system for programming tensor network calculations with an interface modeled
on tensor diagram notation, which allows users to focus on the connectivity of a tensor …
on tensor diagram notation, which allows users to focus on the connectivity of a tensor …
Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
P Scholl, M Schuler, HJ Williams, AA Eberharter… - Nature, 2021 - nature.com
Quantum simulation using synthetic systems is a promising route to solve outstanding
quantum many-body problems in regimes where other approaches, including numerical …
quantum many-body problems in regimes where other approaches, including numerical …
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source OpenMolcas chemistry software environment since
spring 2020 are described, with a focus on novel functionalities accessible in the stable …
spring 2020 are described, with a focus on novel functionalities accessible in the stable …
Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains
The thermalization of isolated quantum many-body systems is deeply related to fundamental
questions of quantum information theory. While integrable or many-body localized systems …
questions of quantum information theory. While integrable or many-body localized systems …
Many-body localization in the age of classical computing
Statistical mechanics provides a framework for describing the physics of large, complex
many-body systems using only a few macroscopic parameters to determine the state of the …
many-body systems using only a few macroscopic parameters to determine the state of the …
Finite-temperature transport in one-dimensional quantum lattice models
Over the last decade impressive progress has been made in the theoretical understanding
of transport properties of clean, one-dimensional quantum lattice systems. Many physically …
of transport properties of clean, one-dimensional quantum lattice systems. Many physically …
Cold atoms meet lattice gauge theory
The central idea of this review is to consider quantum field theory models relevant for
particle physics and replace the fermionic matter in these models by a bosonic one. This is …
particle physics and replace the fermionic matter in these models by a bosonic one. This is …