A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Hierarchical reinforcement learning: A comprehensive survey

S Pateria, B Subagdja, A Tan, C Quek - ACM Computing Surveys (CSUR …, 2021 - dl.acm.org
Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of
challenging long-horizon decision-making tasks into simpler subtasks. During the past …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

Curriculum learning for reinforcement learning domains: A framework and survey

S Narvekar, B Peng, M Leonetti, J Sinapov… - Journal of Machine …, 2020 - jmlr.org
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks
in which the agent has only limited environmental feedback. Despite many advances over …

A survey on data‐efficient algorithms in big data era

A Adadi - Journal of Big Data, 2021 - Springer
The leading approaches in Machine Learning are notoriously data-hungry. Unfortunately,
many application domains do not have access to big data because acquiring data involves a …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

Taskonomy: Disentangling task transfer learning

AR Zamir, A Sax, W Shen, LJ Guibas… - Proceedings of the …, 2018 - openaccess.thecvf.com
Do visual tasks have a relationship, or are they unrelated? For instance, could having
surface normals simplify estimating the depth of an image? Intuition answers these …

Deep learning in mobile and wireless networking: A survey

C Zhang, P Patras, H Haddadi - IEEE Communications surveys …, 2019 - ieeexplore.ieee.org
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …