[BOOK][B] Knot invariants and higher representation theory

B Webster - 2017 - ams.org
We construct knot invariants categorifying the quantum knot variants for all representations
of quantum groups. We show that these invariants coincide with previous invariants defined …

Monoidal categorification of cluster algebras

SJ Kang, M Kashiwara, M Kim, S Oh - Journal of the American Mathematical …, 2018 - ams.org
We prove that the quantum cluster algebra structure of a unipotent quantum coordinate ring
$ A_q (\mathfrak {n}(w)) $, associated with a symmetric Kac–Moody algebra and its Weyl …

Quiver Hecke algebras and 2-Lie algebras

R Rouquier - Algebra colloquium, 2012 - World Scientific
We provide an introduction to the 2-representation theory of Kac-Moody algebras, starting
with basic properties of nil Hecke algebras and quiver Hecke algebras, and continuing with …

Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras

SJ Kang, M Kashiwara - Inventiones mathematicae, 2012 - Springer
In this paper, we prove Khovanov-Lauda's cyclotomic categorification conjecture for all
symmetrizable Kac-Moody algebras. Let U_q(g) be the quantum group associated with a …

Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras

SJ Kang, M Kashiwara, M Kim - Inventiones mathematicae, 2018 - Springer
Let J be a set of pairs consisting of good U'_q (\mathfrak g) U q′(g)-modules and invertible
elements in the base field\mathbb C (q) C (q). The distribution of poles of normalized R …

Simplicity of heads and socles of tensor products

SJ Kang, M Kashiwara, M Kim, S Oh - Compositio Mathematica, 2015 - cambridge.org
Simplicity of heads and socles of tensor products Page 1 Simplicity of heads and socles of
tensor products Seok-** Kang, Masaki Kashiwara, Myungho Kim and Se-** Oh Compositio …

Homological properties of finite-type Khovanov–Lauda–Rouquier algebras

J Brundan, A Kleshchev, PJ McNamara - 2014 - projecteuclid.org
We give an algebraic construction of standard modules—infinite-dimensional modules
categorifying the Poincaré–Birkhoff–Witt basis of the underlying quantized envelo** …

An introduction to diagrammatic algebra and categorified quantum sl (2)

AD Lauda - ar** algebra of sln was introduced by
Beilinson-Lusztig-MacPherson [1], who also related it to the geometry of partial flag varieties …

Finite dimensional representations of Khovanov–Lauda–Rouquier algebras I: finite type

PJ McNamara - Journal für die reine und angewandte Mathematik …, 2015 - degruyter.com
We classify simple representations of Khovanov–Lauda–Rouquier algebras in finite type.
The classification is in terms of a standard family of representations that is shown to yield the …