Deep learning for anomaly detection: A review
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …
research area in various research communities for several decades. There are still some …
Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …
systems, enabling the temporal or spatial identification of anomalous events within videos …
Cutpaste: Self-supervised learning for anomaly detection and localization
We aim at constructing a high performance model for defect detection that detects unknown
anomalous patterns of an image without anomalous data. To this end, we propose a two …
anomalous patterns of an image without anomalous data. To this end, we propose a two …
Self-supervised predictive convolutional attentive block for anomaly detection
Anomaly detection is commonly pursued as a one-class classification problem, where
models can only learn from normal training samples, while being evaluated on both normal …
models can only learn from normal training samples, while being evaluated on both normal …
Anomaly detection in video via self-supervised and multi-task learning
Anomaly detection in video is a challenging computer vision problem. Due to the lack of
anomalous events at training time, anomaly detection requires the design of learning …
anomalous events at training time, anomaly detection requires the design of learning …
Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection
Video anomaly detection under weak labels is formulated as a typical multiple-instance
learning problem in previous works. In this paper, we provide a new perspective, ie, a …
learning problem in previous works. In this paper, we provide a new perspective, ie, a …
Destseg: Segmentation guided denoising student-teacher for anomaly detection
Visual anomaly detection, an important problem in computer vision, is usually formulated as
a one-class classification and segmentation task. The student-teacher (ST) framework has …
a one-class classification and segmentation task. The student-teacher (ST) framework has …
Object-centric auto-encoders and dummy anomalies for abnormal event detection in video
Abnormal event detection in video is a challenging vision problem. Most existing
approaches formulate abnormal event detection as an outlier detection task, due to the …
approaches formulate abnormal event detection as an outlier detection task, due to the …
Ubnormal: New benchmark for supervised open-set video anomaly detection
A Acsintoae, A Florescu… - Proceedings of the …, 2022 - openaccess.thecvf.com
Detecting abnormal events in video is commonly framed as a one-class classification task,
where training videos contain only normal events, while test videos encompass both normal …
where training videos contain only normal events, while test videos encompass both normal …
Old is gold: Redefining the adversarially learned one-class classifier training paradigm
A popular method for anomaly detection is to use the generator of an adversarial network to
formulate anomaly score over reconstruction loss of input. Due to the rare occurrence of …
formulate anomaly score over reconstruction loss of input. Due to the rare occurrence of …