Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

Instruct-nerf2nerf: Editing 3d scenes with instructions

A Haque, M Tancik, AA Efros… - Proceedings of the …, 2023 - openaccess.thecvf.com
We propose a method for editing NeRF scenes with text-instructions. Given a NeRF of a
scene and the collection of images used to reconstruct it, our method uses an image …

Fatezero: Fusing attentions for zero-shot text-based video editing

C Qi, X Cun, Y Zhang, C Lei, X Wang… - Proceedings of the …, 2023 - openaccess.thecvf.com
The diffusion-based generative models have achieved remarkable success in text-based
image generation. However, since it contains enormous randomness in generation …

Instructpix2pix: Learning to follow image editing instructions

T Brooks, A Holynski, AA Efros - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
We propose a method for editing images from human instructions: given an input image and
a written instruction that tells the model what to do, our model follows these instructions to …

Cellpose 2.0: how to train your own model

M Pachitariu, C Stringer - Nature methods, 2022 - nature.com
Pretrained neural network models for biological segmentation can provide good out-of-the-
box results for many image types. However, such models do not allow users to adapt the …

A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?

C Zhang, C Zhang, S Zheng, Y Qiao, C Li… - arxiv preprint arxiv …, 2023 - arxiv.org
As ChatGPT goes viral, generative AI (AIGC, aka AI-generated content) has made headlines
everywhere because of its ability to analyze and create text, images, and beyond. With such …

Inversion-based style transfer with diffusion models

Y Zhang, N Huang, F Tang, H Huang… - Proceedings of the …, 2023 - openaccess.thecvf.com
The artistic style within a painting is the means of expression, which includes not only the
painting material, colors, and brushstrokes, but also the high-level attributes, including …

[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …