Advancing 3D point cloud understanding through deep transfer learning: A comprehensive survey

SS Sohail, Y Himeur, H Kheddar, A Amira, F Fadli… - Information …, 2024 - Elsevier
The 3D point cloud (3DPC) has significantly evolved and benefited from the advance of
deep learning (DL). However, the latter faces various issues, including the lack of data or …

Geometric transformer for fast and robust point cloud registration

Z Qin, H Yu, C Wang, Y Guo… - Proceedings of the …, 2022 - openaccess.thecvf.com
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult …

Regtr: End-to-end point cloud correspondences with transformers

ZJ Yew, GH Lee - Proceedings of the IEEE/CVF conference …, 2022 - openaccess.thecvf.com
Despite recent success in incorporating learning into point cloud registration, many works
focus on learning feature descriptors and continue to rely on nearest-neighbor feature …

3D registration with maximal cliques

X Zhang, J Yang, S Zhang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to
seek the optimal pose to align a point cloud pair. In this paper, we present a 3D registration …

Cofinet: Reliable coarse-to-fine correspondences for robust pointcloud registration

H Yu, F Li, M Saleh, B Busam… - Advances in Neural …, 2021 - proceedings.neurips.cc
We study the problem of extracting correspondences between a pair of point clouds for
registration. For correspondence retrieval, existing works benefit from matching sparse …

Rotation-invariant transformer for point cloud matching

H Yu, Z Qin, J Hou, M Saleh, D Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
The intrinsic rotation invariance lies at the core of matching point clouds with handcrafted
descriptors. However, it is widely despised by recent deep matchers that obtain the rotation …

Pointdsc: Robust point cloud registration using deep spatial consistency

X Bai, Z Luo, L Zhou, H Chen, L Li… - Proceedings of the …, 2021 - openaccess.thecvf.com
Removing outlier correspondences is one of the critical steps for successful feature-based
point cloud registration. Despite the increasing popularity of introducing deep learning …

Sc2-pcr: A second order spatial compatibility for efficient and robust point cloud registration

Z Chen, K Sun, F Yang, W Tao - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
In this paper, we present a second order spatial compatibility (SC^ 2) measure based
method for efficient and robust point cloud registration (PCR), called SC^ 2-PCR. Firstly, we …

Robust point cloud registration framework based on deep graph matching

K Fu, S Liu, X Luo, M Wang - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Abstract 3D point cloud registration is a fundamental problem in computer vision and
robotics. Recently, learning-based point cloud registration methods have made great …