Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Data‐driven machine learning for understanding surface structures of heterogeneous catalysts

H Li, Y Jiao, K Davey, SZ Qiao - … Chemie International Edition, 2023 - Wiley Online Library
The design of heterogeneous catalysts is necessarily surface‐focused, generally achieved
via optimization of adsorption energy and microkinetic modelling. A prerequisite is to ensure …

Quantum chemistry in the age of machine learning

PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …

Exploring chemical compound space with quantum-based machine learning

OA von Lilienfeld, KR Müller… - Nature Reviews Chemistry, 2020 - nature.com
Rational design of compounds with specific properties requires understanding and fast
evaluation of molecular properties throughout chemical compound space—the huge set of …

Ab initio machine learning in chemical compound space

B Huang, OA Von Lilienfeld - Chemical reviews, 2021 - ACS Publications
Chemical compound space (CCS), the set of all theoretically conceivable combinations of
chemical elements and (meta-) stable geometries that make up matter, is colossal. The first …

Machine learning interatomic potentials as emerging tools for materials science

VL Deringer, MA Caro, G Csányi - Advanced Materials, 2019 - Wiley Online Library
Atomic‐scale modeling and understanding of materials have made remarkable progress,
but they are still fundamentally limited by the large computational cost of explicit electronic …

An accurate and transferable machine learning potential for carbon

P Rowe, VL Deringer, P Gasparotto, G Csányi… - The Journal of …, 2020 - pubs.aip.org
We present an accurate machine learning (ML) model for atomistic simulations of carbon,
constructed using the Gaussian approximation potential (GAP) methodology. The potential …

Construction of high accuracy machine learning interatomic potential for surface/interface of nanomaterials—A review

K Wan, J He, X Shi - Advanced Materials, 2024 - Wiley Online Library
The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and
interfaces bestow them with various exceptional properties. These properties, however, also …

Map** materials and molecules

B Cheng, RR Griffiths, S Wengert… - Accounts of Chemical …, 2020 - ACS Publications
Conspectus The visualization of data is indispensable in scientific research, from the early
stages when human insight forms to the final step of communicating results. In …