The emerging trends of multi-label learning
Exabytes of data are generated daily by humans, leading to the growing needs for new
efforts in dealing with the grand challenges for multi-label learning brought by big data. For …
efforts in dealing with the grand challenges for multi-label learning brought by big data. For …
Asymmetric loss for multi-label classification
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …
negative ones. This positive-negative imbalance dominates the optimization process, and …
Query2label: A simple transformer way to multi-label classification
This paper presents a simple and effective approach to solving the multi-label classification
problem. The proposed approach leverages Transformer decoders to query the existence of …
problem. The proposed approach leverages Transformer decoders to query the existence of …
Residual attention: A simple but effective method for multi-label recognition
Multi-label image recognition is a challenging computer vision task of practical use.
Progresses in this area, however, are often characterized by complicated methods, heavy …
Progresses in this area, however, are often characterized by complicated methods, heavy …
Dualcoop: Fast adaptation to multi-label recognition with limited annotations
Solving multi-label recognition (MLR) for images in the low-label regime is a challenging
task with many real-world applications. Recent work learns an alignment between textual …
task with many real-world applications. Recent work learns an alignment between textual …
When object detection meets knowledge distillation: A survey
Object detection (OD) is a crucial computer vision task that has seen the development of
many algorithms and models over the years. While the performance of current OD models …
many algorithms and models over the years. While the performance of current OD models …
Learning semantic-specific graph representation for multi-label image recognition
Recognizing multiple labels of images is a practical and challenging task, and significant
progress has been made by searching semantic-aware regions and modeling label …
progress has been made by searching semantic-aware regions and modeling label …
Ml-decoder: Scalable and versatile classification head
In this paper, we introduce ML-Decoder, a new attention-based classification head. ML-
Decoder predicts the existence of class labels via queries, and enables better utilization of …
Decoder predicts the existence of class labels via queries, and enables better utilization of …
Knowledge-guided multi-label few-shot learning for general image recognition
Recognizing multiple labels of an image is a practical yet challenging task, and remarkable
progress has been achieved by searching for semantic regions and exploiting label …
progress has been achieved by searching for semantic regions and exploiting label …
Asymmetric loss for multi-label classification
In a typical multi-label setting, a picture contains on average few positive labels, and many
negative ones. This positive-negative imbalance dominates the optimization process, and …
negative ones. This positive-negative imbalance dominates the optimization process, and …