[BOOK][B] Foundations of quantum theory: From classical concepts to operator algebras
K Landsman - 2017 - library.oapen.org
'Der Kopf, so gesehen, hat mit dem Kopf, so gesehen, auch nicht die leiseste Ahnlichkeit (...)
Der Aspektwechsel.“Du würdest doch sagen, dass sich das Bild jetzt gänzlich geändert hat!” …
Der Aspektwechsel.“Du würdest doch sagen, dass sich das Bild jetzt gänzlich geändert hat!” …
The algebra of entanglement and the geometry of composition
A Hadzihasanovic - arxiv preprint arxiv:1709.08086, 2017 - arxiv.org
String diagrams turn algebraic equations into topological moves that have recurring shapes,
involving the sliding of one diagram past another. We individuate, at the root of this fact, the …
involving the sliding of one diagram past another. We individuate, at the root of this fact, the …
A prehistory of n-categorical physics
14 a prehistory of n-categorical physics just categories and bicategories). We also include a
review of some relevant aspects of twentieth-century physics. The most obvious roads to n …
review of some relevant aspects of twentieth-century physics. The most obvious roads to n …
The way of the dagger
M Karvonen - arxiv preprint arxiv:1904.10805, 2019 - arxiv.org
A dagger category is a category equipped with a functorial way of reversing morphisms, ie a
contravariant involutive identity-on-objects endofunctor. Dagger categories with additional …
contravariant involutive identity-on-objects endofunctor. Dagger categories with additional …
H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics
A certain class of Frobenius algebras has been used to characterize orthonormal bases and
observables on finite-dimensional Hilbert spaces. The presence of units in these algebras …
observables on finite-dimensional Hilbert spaces. The presence of units in these algebras …
Quantum logic in dagger kernel categories
This paper investigates quantum logic from the perspective of categorical logic, and starts
from minimal assumptions, namely the existence of involutions/daggers and kernels. The …
from minimal assumptions, namely the existence of involutions/daggers and kernels. The …
Monads on dagger categories
The theory of monads on categories equipped with a dagger (a contravariant identity-on-
objects involutive endofunctor) works best when everything respects the dagger: the monad …
objects involutive endofunctor) works best when everything respects the dagger: the monad …
Bennett and Stinespring, together at last
We present a universal construction that relates reversible dynamics on open systems to
arbitrary dynamics on closed systems: the restriction affine completion of a monoidal …
arbitrary dynamics on closed systems: the restriction affine completion of a monoidal …
Scalars, monads, and categories
D Coumans, B Jacobs - arxiv preprint arxiv:1003.0585, 2010 - arxiv.org
This chapter describes interrelations between:(1) algebraic structure on sets of scalars,(2)
properties of monads associated with such sets of scalars, and (3) structure in categories …
properties of monads associated with such sets of scalars, and (3) structure in categories …
Twisted homological stability for configuration spaces
M Palmer - arxiv preprint arxiv:1308.4397, 2013 - arxiv.org
Let M be an open, connected manifold. A classical theorem of McDuff and Segal states that
the sequence of configuration spaces of n unordered, distinct points in M is homologically …
the sequence of configuration spaces of n unordered, distinct points in M is homologically …