A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

Federated learning meets blockchain in edge computing: Opportunities and challenges

DC Nguyen, M Ding, QV Pham… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Mobile-edge computing (MEC) has been envisioned as a promising paradigm to handle the
massive volume of data generated from ubiquitous mobile devices for enabling intelligent …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems

OA Wahab, A Mourad, H Otrok… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The communication and networking field is hungry for machine learning decision-making
solutions to replace the traditional model-driven approaches that proved to be not rich …

No fear of heterogeneity: Classifier calibration for federated learning with non-iid data

M Luo, F Chen, D Hu, Y Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
A central challenge in training classification models in the real-world federated system is
learning with non-IID data. To cope with this, most of the existing works involve enforcing …

[PDF][PDF] Manipulating the byzantine: Optimizing model poisoning attacks and defenses for federated learning

V Shejwalkar, A Houmansadr - NDSS, 2021 - par.nsf.gov
Federated learning (FL) enables many data owners (eg, mobile devices) to train a joint ML
model (eg, a next-word prediction classifier) without the need of sharing their private training …

An efficient framework for clustered federated learning

A Ghosh, J Chung, D Yin… - Advances in Neural …, 2020 - proceedings.neurips.cc
We address the problem of Federated Learning (FL) where users are distributed and
partitioned into clusters. This setup captures settings where different groups of users have …

Federated learning with hierarchical clustering of local updates to improve training on non-IID data

C Briggs, Z Fan, P Andras - 2020 international joint conference …, 2020 - ieeexplore.ieee.org
Federated learning (FL) is a well established method for performing machine learning tasks
over massively distributed data. However in settings where data is distributed in a non-iid …

Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints

F Sattler, KR Müller, W Samek - IEEE transactions on neural …, 2020 - ieeexplore.ieee.org
Federated learning (FL) is currently the most widely adopted framework for collaborative
training of (deep) machine learning models under privacy constraints. Albeit its popularity, it …

Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization

A Reisizadeh, A Mokhtari, H Hassani… - International …, 2020 - proceedings.mlr.press
Federated learning is a distributed framework according to which a model is trained over a
set of devices, while kee** data localized. This framework faces several systems-oriented …