Scientific machine learning through physics–informed neural networks: Where we are and what's next

S Cuomo, VS Di Cola, F Giampaolo, G Rozza… - Journal of Scientific …, 2022 - Springer
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …

Physics-informed neural network (PINN) evolution and beyond: A systematic literature review and bibliometric analysis

ZK Lawal, H Yassin, DTC Lai, A Che Idris - Big Data and Cognitive …, 2022 - mdpi.com
This research aims to study and assess state-of-the-art physics-informed neural networks
(PINNs) from different researchers' perspectives. The PRISMA framework was used for a …

Physics-informed machine learning: A survey on problems, methods and applications

Z Hao, S Liu, Y Zhang, C Ying, Y Feng, H Su… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent advances of data-driven machine learning have revolutionized fields like computer
vision, reinforcement learning, and many scientific and engineering domains. In many real …

An expert's guide to training physics-informed neural networks

S Wang, S Sankaran, H Wang, P Perdikaris - arxiv preprint arxiv …, 2023 - arxiv.org
Physics-informed neural networks (PINNs) have been popularized as a deep learning
framework that can seamlessly synthesize observational data and partial differential …

Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios

C Xu, BT Cao, Y Yuan, G Meschke - Computer Methods in Applied …, 2023 - Elsevier
Recently, a class of machine learning methods called physics-informed neural networks
(PINNs) has been proposed and gained prevalence in solving various scientific computing …

Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing

SA Faroughi, N Pawar, C Fernandes, M Raissi… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent breakthroughs in computing power have made it feasible to use machine learning
and deep learning to advance scientific computing in many fields, including fluid mechanics …

Separable physics-informed neural networks

J Cho, S Nam, H Yang, SB Yun… - Advances in Neural …, 2024 - proceedings.neurips.cc
Physics-informed neural networks (PINNs) have recently emerged as promising data-driven
PDE solvers showing encouraging results on various PDEs. However, there is a …

Physics-informed Neural Networks (PINN) for computational solid mechanics: Numerical frameworks and applications

H Hu, L Qi, X Chao - Thin-Walled Structures, 2024 - Elsevier
For solving the computational solid mechanics problems, despite significant advances have
been achieved through the numerical discretization of partial differential equations (PDEs) …

Physics-informed neural networks combined with polynomial interpolation to solve nonlinear partial differential equations

S Tang, X Feng, W Wu, H Xu - Computers & Mathematics with Applications, 2023 - Elsevier
In this paper, we utilise the physics-informed neural networks (PINN) combined with
interpolation polynomials to solve nonlinear partial differential equations and for simplicity …

Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting

J Hou, Y Li, S Ying - Nonlinear Dynamics, 2023 - Springer
Physics-informed neural networks (PINNs) are an emerging method for solving partial
differential equations (PDEs) and have been widely applied in the field of scientific …