Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things
Decentralized paradigm in the field of cybersecurity and machine learning (ML) for the
emerging Internet of Things (IoT) has gained a lot of attention from the government …
emerging Internet of Things (IoT) has gained a lot of attention from the government …
Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
Advances and open problems in federated learning
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …
devices or whole organizations) collaboratively train a model under the orchestration of a …
A survey on security and privacy of federated learning
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …
decentralized data and training that brings learning to the edge or directly on-device. FL is a …
Ditto: Fair and robust federated learning through personalization
Fairness and robustness are two important concerns for federated learning systems. In this
work, we identify that robustness to data and model poisoning attacks and fairness …
work, we identify that robustness to data and model poisoning attacks and fairness …
Data poisoning attacks against federated learning systems
Federated learning (FL) is an emerging paradigm for distributed training of large-scale deep
neural networks in which participants' data remains on their own devices with only model …
neural networks in which participants' data remains on their own devices with only model …
Attack of the tails: Yes, you really can backdoor federated learning
Due to its decentralized nature, Federated Learning (FL) lends itself to adversarial attacks in
the form of backdoors during training. The goal of a backdoor is to corrupt the performance …
the form of backdoors during training. The goal of a backdoor is to corrupt the performance …
Backdoor learning: A survey
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …
that the attacked models perform well on benign samples, whereas their predictions will be …
Reflection backdoor: A natural backdoor attack on deep neural networks
Recent studies have shown that DNNs can be compromised by backdoor attacks crafted at
training time. A backdoor attack installs a backdoor into the victim model by injecting a …
training time. A backdoor attack installs a backdoor into the victim model by injecting a …
[HTML][HTML] Privacy-preserving artificial intelligence in healthcare: Techniques and applications
There has been an increasing interest in translating artificial intelligence (AI) research into
clinically-validated applications to improve the performance, capacity, and efficacy of …
clinically-validated applications to improve the performance, capacity, and efficacy of …