A comprehensive survey on applications of transformers for deep learning tasks

S Islam, H Elmekki, A Elsebai, J Bentahar… - Expert Systems with …, 2024 - Elsevier
Abstract Transformers are Deep Neural Networks (DNN) that utilize a self-attention
mechanism to capture contextual relationships within sequential data. Unlike traditional …

A review of deep learning techniques for speech processing

A Mehrish, N Majumder, R Bharadwaj, R Mihalcea… - Information …, 2023 - Elsevier
The field of speech processing has undergone a transformative shift with the advent of deep
learning. The use of multiple processing layers has enabled the creation of models capable …

A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?

C Zhang, C Zhang, S Zheng, Y Qiao, C Li… - arxiv preprint arxiv …, 2023 - arxiv.org
As ChatGPT goes viral, generative AI (AIGC, aka AI-generated content) has made headlines
everywhere because of its ability to analyze and create text, images, and beyond. With such …

A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges

W Li, R Huang, J Li, Y Liao, Z Chen, G He… - … Systems and Signal …, 2022 - Elsevier
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …

[HTML][HTML] Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond

G Yang, Q Ye, J **a - Information Fusion, 2022 - Elsevier
Abstract Explainable Artificial Intelligence (XAI) is an emerging research topic of machine
learning aimed at unboxing how AI systems' black-box choices are made. This research field …

[HTML][HTML] A systematic review of data fusion techniques for optimized structural health monitoring

S Hassani, U Dackermann, M Mousavi, J Li - Information Fusion, 2024 - Elsevier
Advancements in structural health monitoring (SHM) techniques have spiked in the past few
decades due to the rapid evolution of novel sensing and data transfer technologies. This …

A survey of deep active learning

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM computing …, 2021 - dl.acm.org
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …

A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system

W Li, Y Chai, F Khan, SRU Jan, S Verma… - Mobile networks and …, 2021 - Springer
The outbreak of chronic diseases such as COVID-19 has made a renewed call for providing
urgent healthcare facilities to the citizens across the globe. The recent pandemic exposes …

Deep reinforcement learning in computer vision: a comprehensive survey

N Le, VS Rathour, K Yamazaki, K Luu… - Artificial Intelligence …, 2022 - Springer
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …

Comparison of deep learning approaches to predict COVID-19 infection

TB Alakus, I Turkoglu - Chaos, Solitons & Fractals, 2020 - Elsevier
The SARS-CoV2 virus, which causes COVID-19 (coronavirus disease) has become a
pandemic and has expanded all over the world. Because of increasing number of cases day …