[HTML][HTML] Embracing change: Continual learning in deep neural networks
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
predominantly relies on fixed datasets and stationary environments. Continual learning is an …
Towards continual reinforcement learning: A review and perspectives
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
Efficient diffusion training via min-snr weighting strategy
Denoising diffusion models have been a mainstream approach for image generation,
however, training these models often suffers from slow convergence. In this paper, we …
however, training these models often suffers from slow convergence. In this paper, we …
Prompt-aligned gradient for prompt tuning
Thanks to the large pre-trained vision-language models (VLMs) like CLIP, we can craft a
zero-shot classifier by discrete prompt design, eg, the confidence score of an image …
zero-shot classifier by discrete prompt design, eg, the confidence score of an image …
An empirical study of training end-to-end vision-and-language transformers
Abstract Vision-and-language (VL) pre-training has proven to be highly effective on various
VL downstream tasks. While recent work has shown that fully transformer-based VL models …
VL downstream tasks. While recent work has shown that fully transformer-based VL models …
Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning
Diffusion models have demonstrated highly-expressive generative capabilities in vision and
NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are …
NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are …
Imagenet-21k pretraining for the masses
ImageNet-1K serves as the primary dataset for pretraining deep learning models for
computer vision tasks. ImageNet-21K dataset, which is bigger and more diverse, is used …
computer vision tasks. ImageNet-21K dataset, which is bigger and more diverse, is used …
Rewarded soups: towards pareto-optimal alignment by interpolating weights fine-tuned on diverse rewards
Foundation models are first pre-trained on vast unsupervised datasets and then fine-tuned
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …
on labeled data. Reinforcement learning, notably from human feedback (RLHF), can further …
Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations and action chunking
The grand aim of having a single robot that can manipulate arbitrary objects in diverse
settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets …
settings is at odds with the paucity of robotics datasets. Acquiring and growing such datasets …
Conflict-averse gradient descent for multi-task learning
The goal of multi-task learning is to enable more efficient learning than single task learning
by sharing model structures for a diverse set of tasks. A standard multi-task learning …
by sharing model structures for a diverse set of tasks. A standard multi-task learning …