Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[PDF][PDF] Comparison of optimization techniques based on gradient descent algorithm: A review
Whether you deal with a real-life issue or create a software product, optimization is
constantly the ultimate goal. This goal, however, is achieved by utilizing one of the …
constantly the ultimate goal. This goal, however, is achieved by utilizing one of the …
Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues
Over recent years, there has been a rapid development of deep learning (DL) in both
industry and academia fields. However, finding the optimal hyperparameters of a DL model …
industry and academia fields. However, finding the optimal hyperparameters of a DL model …
Demystifying parallel and distributed deep learning: An in-depth concurrency analysis
Deep Neural Networks (DNNs) are becoming an important tool in modern computing
applications. Accelerating their training is a major challenge and techniques range from …
applications. Accelerating their training is a major challenge and techniques range from …
Neuroevolution in deep neural networks: Current trends and future challenges
A variety of methods have been applied to the architectural configuration and learning or
training of artificial deep neural networks (DNN). These methods play a crucial role in the …
training of artificial deep neural networks (DNN). These methods play a crucial role in the …
Half a dozen real-world applications of evolutionary multitasking, and more
Until recently, the potential to transfer evolved skills across distinct optimization problem
instances (or tasks) was seldom explored in evolutionary computation. The concept of …
instances (or tasks) was seldom explored in evolutionary computation. The concept of …
A survey on evolutionary construction of deep neural networks
Automated construction of deep neural networks (DNNs) has become a research hot spot
nowadays because DNN's performance is heavily influenced by its architecture and …
nowadays because DNN's performance is heavily influenced by its architecture and …
Evolutionary reinforcement learning: A survey
Reinforcement learning (RL) is a machine learning approach that trains agents to maximize
cumulative rewards through interactions with environments. The integration of RL with deep …
cumulative rewards through interactions with environments. The integration of RL with deep …
Automatic design of machine learning via evolutionary computation: A survey
Abstract Machine learning (ML), as the most promising paradigm to discover deep
knowledge from data, has been widely applied to practical applications, such as …
knowledge from data, has been widely applied to practical applications, such as …
A review of population-based metaheuristics for large-scale black-box global optimization—Part II
This article is the second part of a two-part survey series on large-scale global optimization.
The first part covered two major algorithmic approaches to large-scale optimization, namely …
The first part covered two major algorithmic approaches to large-scale optimization, namely …
Unbiased gradient estimation in unrolled computation graphs with persistent evolution strategies
Unrolled computation graphs arise in many scenarios, including training RNNs, tuning
hyperparameters through unrolled optimization, and training learned optimizers. Current …
hyperparameters through unrolled optimization, and training learned optimizers. Current …