Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
Physics-inspired structural representations for molecules and materials
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …
predict or elucidate the relationship between the atomic-scale structure of matter and its …
Recent advances and applications of machine learning in solid-state materials science
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …
is machine learning. This collection of statistical methods has already proved to be capable …
Machine learning and the physical sciences
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …
for a vast array of data processing tasks, which has entered most scientific disciplines in …
Neural network potential energy surfaces for small molecules and reactions
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
Quantum chemistry in the age of machine learning
PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …
new methods and applications based on the combination of QC and ML is surging. In this …
Roadmap on machine learning in electronic structure
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
Atomic cluster expansion for accurate and transferable interatomic potentials
R Drautz - Physical Review B, 2019 - APS
The atomic cluster expansion is developed as a complete descriptor of the local atomic
environment, including multicomponent materials, and its relation to a number of other …
environment, including multicomponent materials, and its relation to a number of other …
Ab initio machine learning in chemical compound space
Chemical compound space (CCS), the set of all theoretically conceivable combinations of
chemical elements and (meta-) stable geometries that make up matter, is colossal. The first …
chemical elements and (meta-) stable geometries that make up matter, is colossal. The first …