Modal analysis of fluid flows: An overview
SIMPLE aerodynamic configurations under even modest conditions can exhibit complex
flows with a wide range of temporal and spatial features. It has become common practice in …
flows with a wide range of temporal and spatial features. It has become common practice in …
Data-driven modeling for unsteady aerodynamics and aeroelasticity
Aerodynamic modeling plays an important role in multiphysics and design problems, in
addition to experiment and numerical simulation, due to its low-dimensional representation …
addition to experiment and numerical simulation, due to its low-dimensional representation …
[BOOK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
Digital twin: Values, challenges and enablers from a modeling perspective
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
data and simulators for real-time prediction, optimization, monitoring, controlling, and …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
Closed-loop turbulence control: Progress and challenges
Closed-loop turbulence control is a critical enabler of aerodynamic drag reduction, lift
increase, mixing enhancement, and noise reduction. Current and future applications have …
increase, mixing enhancement, and noise reduction. Current and future applications have …
[HTML][HTML] Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
A common strategy for the dimensionality reduction of nonlinear partial differential equations
(PDEs) relies on the use of the proper orthogonal decomposition (POD) to identify a reduced …
(PDEs) relies on the use of the proper orthogonal decomposition (POD) to identify a reduced …
[BOOK][B] Machine learning control-taming nonlinear dynamics and turbulence
This book is an introduction to machine learning control (MLC), a surprisingly simple model-
free methodology to tame complex nonlinear systems. These systems are assumed to be …
free methodology to tame complex nonlinear systems. These systems are assumed to be …
A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks
Reduced Order Modeling (ROM) for engineering applications has been a major research
focus in the past few decades due to the unprecedented physical insight into turbulence …
focus in the past few decades due to the unprecedented physical insight into turbulence …
Wave packets and turbulent jet noise
Turbulent jet noise is a controversial fluid mechanical puzzle that has amused and
bewildered researchers for more than half a century. Whereas numerical simulations are …
bewildered researchers for more than half a century. Whereas numerical simulations are …