Communication-efficient edge AI: Algorithms and systems

Y Shi, K Yang, T Jiang, J Zhang… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields,
ranging from speech processing, image classification to drug discovery. This is driven by the …

A survey on resource management in joint communication and computing-embedded SAGIN

Q Chen, Z Guo, W Meng, S Han, C Li… - … Surveys & Tutorials, 2024 - ieeexplore.ieee.org
The advent of the 6G era aims for ubiquitous connectivity, with the integration of non-
terrestrial networks (NTN) offering extensive coverage and enhanced capacity. As …

Federated learning with buffered asynchronous aggregation

J Nguyen, K Malik, H Zhan… - International …, 2022 - proceedings.mlr.press
Scalability and privacy are two critical concerns for cross-device federated learning (FL)
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …

Federated learning: Challenges, methods, and future directions

T Li, AK Sahu, A Talwalkar… - IEEE signal processing …, 2020 - ieeexplore.ieee.org
Federated learning involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while kee** data localized. Training in …

Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization

A Reisizadeh, A Mokhtari, H Hassani… - International …, 2020 - proceedings.mlr.press
Federated learning is a distributed framework according to which a model is trained over a
set of devices, while kee** data localized. This framework faces several systems-oriented …

Efficient parallel split learning over resource-constrained wireless edge networks

Z Lin, G Zhu, Y Deng, X Chen, Y Gao… - IEEE Transactions …, 2024 - ieeexplore.ieee.org
The increasingly deeper neural networks hinder the democratization of privacy-enhancing
distributed learning, such as federated learning (FL), to resource-constrained devices. To …

Joint device scheduling and resource allocation for latency constrained wireless federated learning

W Shi, S Zhou, Z Niu, M Jiang… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
In federated learning (FL), devices contribute to the global training by uploading their local
model updates via wireless channels. Due to limited computation and communication …

Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air

MM Amiri, D Gündüz - IEEE Transactions on Signal Processing, 2020 - ieeexplore.ieee.org
We study federated machine learning (ML) at the wireless edge, where power-and
bandwidth-limited wireless devices with local datasets carry out distributed stochastic …

Reliable distributed computing for metaverse: A hierarchical game-theoretic approach

Y Jiang, J Kang, D Niyato, X Ge, Z **ong… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
The metaverse is regarded as a new wave of technological transformation that provides a
virtual space for people to interact through digital avatars. To achieve immersive user …

Lagrange coded computing: Optimal design for resiliency, security, and privacy

Q Yu, S Li, N Raviv, SMM Kalan… - The 22nd …, 2019 - proceedings.mlr.press
We consider a scenario involving computations over a massive dataset stored distributedly
across multiple workers, which is at the core of distributed learning algorithms. We propose …