A survey of embodied ai: From simulators to research tasks

J Duan, S Yu, HL Tan, H Zhu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
There has been an emerging paradigm shift from the era of “internet AI” to “embodied AI,”
where AI algorithms and agents no longer learn from datasets of images, videos or text …

Magic3d: High-resolution text-to-3d content creation

CH Lin, J Gao, L Tang, T Takikawa… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recently, DreamFusion demonstrated the utility of a pretrained text-to-image diffusion model
to optimize Neural Radiance Fields (NeRF), achieving remarkable text-to-3D synthesis …

Get3d: A generative model of high quality 3d textured shapes learned from images

J Gao, T Shen, Z Wang, W Chen… - Advances In …, 2022 - proceedings.neurips.cc
As several industries are moving towards modeling massive 3D virtual worlds, the need for
content creation tools that can scale in terms of the quantity, quality, and diversity of 3D …

Lion: Latent point diffusion models for 3d shape generation

A Vahdat, F Williams, Z Gojcic… - Advances in …, 2022 - proceedings.neurips.cc
Denoising diffusion models (DDMs) have shown promising results in 3D point cloud
synthesis. To advance 3D DDMs and make them useful for digital artists, we require (i) high …

Omniobject3d: Large-vocabulary 3d object dataset for realistic perception, reconstruction and generation

T Wu, J Zhang, X Fu, Y Wang, J Ren… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recent advances in modeling 3D objects mostly rely on synthetic datasets due to the lack of
large-scale real-scanned 3D databases. To facilitate the development of 3D perception …

Suds: Scalable urban dynamic scenes

H Turki, JY Zhang, F Ferroni… - Proceedings of the …, 2023 - openaccess.thecvf.com
We extend neural radiance fields (NeRFs) to dynamic large-scale urban scenes. Prior work
tends to reconstruct single video clips of short durations (up to 10 seconds). Two reasons …

Decomposing nerf for editing via feature field distillation

S Kobayashi, E Matsumoto… - Advances in Neural …, 2022 - proceedings.neurips.cc
Emerging neural radiance fields (NeRF) are a promising scene representation for computer
graphics, enabling high-quality 3D reconstruction and novel view synthesis from image …

Efficient geometry-aware 3d generative adversarial networks

ER Chan, CZ Lin, MA Chan… - Proceedings of the …, 2022 - openaccess.thecvf.com
Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using
only collections of single-view 2D photographs has been a long-standing challenge …

Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs

M Niemeyer, JT Barron, B Mildenhall… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Neural Radiance Fields (NeRF) have emerged as a powerful representation for the
task of novel view synthesis due to their simplicity and state-of-the-art performance. Though …

Alias-free generative adversarial networks

T Karras, M Aittala, S Laine… - Advances in neural …, 2021 - proceedings.neurips.cc
We observe that despite their hierarchical convolutional nature, the synthesis process of
typical generative adversarial networks depends on absolute pixel coordinates in an …