Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on evolutionary neural architecture search
Deep neural networks (DNNs) have achieved great success in many applications. The
architectures of DNNs play a crucial role in their performance, which is usually manually …
architectures of DNNs play a crucial role in their performance, which is usually manually …
[HTML][HTML] A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks
Abstract Convolutional Neural Network (CNN) is a prevalent topic in deep learning (DL)
research for their architectural advantages. CNN relies heavily on hyperparameter …
research for their architectural advantages. CNN relies heavily on hyperparameter …
Evolutionary deep learning: A survey
As an advanced artificial intelligence technique for solving learning problems, deep learning
(DL) has achieved great success in many real-world applications and attracted increasing …
(DL) has achieved great success in many real-world applications and attracted increasing …
Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues
Over recent years, there has been a rapid development of deep learning (DL) in both
industry and academia fields. However, finding the optimal hyperparameters of a DL model …
industry and academia fields. However, finding the optimal hyperparameters of a DL model …
Particle swarm optimization of deep neural networks architectures for image classification
Deep neural networks have been shown to outperform classical machine learning
algorithms in solving real-world problems. However, the most successful deep neural …
algorithms in solving real-world problems. However, the most successful deep neural …
Neural architecture search based on a multi-objective evolutionary algorithm with probability stack
With the emergence of deep neural networks, many research fields, such as image
classification, object detection, speech recognition, natural language processing, machine …
classification, object detection, speech recognition, natural language processing, machine …
Delving deep into spatial pooling for squeeze-and-excitation networks
Abstract Squeeze-and-Excitation (SE) blocks have demonstrated significant accuracy gains
for state-of-the-art deep architectures by re-weighting channel-wise feature responses. The …
for state-of-the-art deep architectures by re-weighting channel-wise feature responses. The …
A comprehensive survey on optimizing deep learning models by metaheuristics
Deep neural networks (DNNs), which are extensions of artificial neural networks, can learn
higher levels of feature hierarchy established by lower level features by transforming the raw …
higher levels of feature hierarchy established by lower level features by transforming the raw …
Eight years of AutoML: categorisation, review and trends
Abstract Knowledge extraction through machine learning techniques has been successfully
applied in a large number of application domains. However, apart from the required …
applied in a large number of application domains. However, apart from the required …
A survey of swarm and evolutionary computing approaches for deep learning
Deep learning (DL) has become an important machine learning approach that has been
widely successful in many applications. Currently, DL is one of the best methods of …
widely successful in many applications. Currently, DL is one of the best methods of …