[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches
A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
Universeg: Universal medical image segmentation
While deep learning models have become the predominant method for medical image
segmentation, they are typically not capable of generalizing to unseen segmentation tasks …
segmentation, they are typically not capable of generalizing to unseen segmentation tasks …
Recent advances and clinical applications of deep learning in medical image analysis
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …
processing algorithms, and deep learning based models have been remarkably successful …
Data augmentation for medical imaging: A systematic literature review
Abstract Recent advances in Deep Learning have largely benefited from larger and more
diverse training sets. However, collecting large datasets for medical imaging is still a …
diverse training sets. However, collecting large datasets for medical imaging is still a …
Medical image segmentation using deep learning: A survey
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …
papers has been presented recording the success of deep learning in the field. A …
Contrastive learning of global and local features for medical image segmentation with limited annotations
A key requirement for the success of supervised deep learning is a large labeled dataset-a
condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) …
condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) …
Deep learning for cardiac image segmentation: a review
Deep learning has become the most widely used approach for cardiac image segmentation
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …
Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation
The medical imaging literature has witnessed remarkable progress in high-performing
segmentation models based on convolutional neural networks. Despite the new …
segmentation models based on convolutional neural networks. Despite the new …
Data augmentation for graph neural networks
Data augmentation has been widely used to improve generalizability of machine learning
models. However, comparatively little work studies data augmentation for graphs. This is …
models. However, comparatively little work studies data augmentation for graphs. This is …