[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …

A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

Universeg: Universal medical image segmentation

VI Butoi, JJG Ortiz, T Ma, MR Sabuncu… - Proceedings of the …, 2023 - openaccess.thecvf.com
While deep learning models have become the predominant method for medical image
segmentation, they are typically not capable of generalizing to unseen segmentation tasks …

Recent advances and clinical applications of deep learning in medical image analysis

X Chen, X Wang, K Zhang, KM Fung, TC Thai… - Medical image …, 2022 - Elsevier
Deep learning has received extensive research interest in develo** new medical image
processing algorithms, and deep learning based models have been remarkably successful …

Data augmentation for medical imaging: A systematic literature review

F Garcea, A Serra, F Lamberti, L Morra - Computers in Biology and …, 2023 - Elsevier
Abstract Recent advances in Deep Learning have largely benefited from larger and more
diverse training sets. However, collecting large datasets for medical imaging is still a …

Medical image segmentation using deep learning: A survey

R Wang, T Lei, R Cui, B Zhang, H Meng… - IET image …, 2022 - Wiley Online Library
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …

Contrastive learning of global and local features for medical image segmentation with limited annotations

K Chaitanya, E Erdil, N Karani… - Advances in neural …, 2020 - proceedings.neurips.cc
A key requirement for the success of supervised deep learning is a large labeled dataset-a
condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) …

Deep learning for cardiac image segmentation: a review

C Chen, C Qin, H Qiu, G Tarroni, J Duan… - Frontiers in …, 2020 - frontiersin.org
Deep learning has become the most widely used approach for cardiac image segmentation
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …

Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation

N Tajbakhsh, L Jeyaseelan, Q Li, JN Chiang, Z Wu… - Medical image …, 2020 - Elsevier
The medical imaging literature has witnessed remarkable progress in high-performing
segmentation models based on convolutional neural networks. Despite the new …

Data augmentation for graph neural networks

T Zhao, Y Liu, L Neves, O Woodford, M Jiang… - Proceedings of the aaai …, 2021 - ojs.aaai.org
Data augmentation has been widely used to improve generalizability of machine learning
models. However, comparatively little work studies data augmentation for graphs. This is …