Electrospinning and electrospun nanofibers: Methods, materials, and applications

J Xue, T Wu, Y Dai, Y **a - Chemical reviews, 2019 - ACS Publications
Electrospinning is a versatile and viable technique for generating ultrathin fibers.
Remarkable progress has been made with regard to the development of electrospinning …

Inkjet bioprinting of biomaterials

X Li, B Liu, B Pei, J Chen, D Zhou, J Peng… - Chemical …, 2020 - ACS Publications
The inkjet technique has the capability of generating droplets in the picoliter volume range,
firing thousands of times in a few seconds and printing in the noncontact manner. Since its …

Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare

Z Jia, X Xu, D Zhu, Y Zheng - Progress in Materials Science, 2023 - Elsevier
Trauma-and disease-related skeletal defects and illnesses are plaguing millions of people
especially in an ageing globe. Recently, the convergence of additive manufacturing (AM) …

Current state of fabrication technologies and materials for bone tissue engineering

A Wubneh, EK Tsekoura, C Ayranci, H Uludağ - Acta Biomaterialia, 2018 - Elsevier
A range of traditional and free-form fabrication technologies have been investigated and, in
numerous occasions, commercialized for use in the field of regenerative tissue engineering …

Biofabrication: a guide to technology and terminology

L Moroni, T Boland, JA Burdick, C De Maria… - Trends in …, 2018 - cell.com
Biofabrication holds the potential to generate constructs that more closely recapitulate the
complexity and heterogeneity of tissues and organs than do currently available regenerative …

3D bioprinting: from benches to translational applications

MA Heinrich, W Liu, A Jimenez, J Yang, A Akpek, X Liu… - Small, 2019 - Wiley Online Library
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue
engineering and regenerative medicine. However, conventional 3D biofabrication …

Polymers for melt electrowriting

JC Kade, PD Dalton - Advanced healthcare materials, 2021 - Wiley Online Library
Melt electrowriting (MEW) is an emerging high‐resolution additive manufacturing technique
based on the electrohydrodynamic processing of polymers. MEW is predominantly used to …

Electrospun nanofibers for wound healing

M Liu, XP Duan, YM Li, DP Yang, YZ Long - Materials Science and …, 2017 - Elsevier
Electrospinning has been widely used as a nanofiber fabrication technique. Its simple
process, cost effectiveness and versatility have appealed to materials scientists globally …

The application of polycaprolactone in three-dimensional printing scaffolds for bone tissue engineering

X Yang, Y Wang, Y Zhou, J Chen, Q Wan - Polymers, 2021 - mdpi.com
Bone tissue engineering commonly encompasses the use of three-dimensional (3D)
scaffolds to provide a suitable microenvironment for the propagation of cells to regenerate …

Volumetric printing across melt electrowritten scaffolds fabricates multi‐material living constructs with tunable architecture and mechanics

G Größbacher, M Bartolf‐Kopp, C Gergely… - Advanced …, 2023 - Wiley Online Library
Major challenges in biofabrication revolve around capturing the complex, hierarchical
composition of native tissues. However, individual 3D printing techniques have limited …