Advances in medical image analysis with vision transformers: a comprehensive review
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …
has recently also triggered broad interest in Computer Vision. Among other merits …
Feature dimensionality reduction: a review
W Jia, M Sun, J Lian, S Hou - Complex & Intelligent Systems, 2022 - Springer
As basic research, it has also received increasing attention from people that the “curse of
dimensionality” will lead to increase the cost of data storage and computing; it also …
dimensionality” will lead to increase the cost of data storage and computing; it also …
Run, don't walk: chasing higher FLOPS for faster neural networks
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
Vision mamba: Efficient visual representation learning with bidirectional state space model
Recently the state space models (SSMs) with efficient hardware-aware designs, ie, the
Mamba deep learning model, have shown great potential for long sequence modeling …
Mamba deep learning model, have shown great potential for long sequence modeling …
SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer
This study proposes a novel general image fusion framework based on cross-domain long-
range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention …
range learning and Swin Transformer, termed as SwinFusion. On the one hand, an attention …
Vision gnn: An image is worth graph of nodes
Network architecture plays a key role in the deep learning-based computer vision system.
The widely-used convolutional neural network and transformer treat the image as a grid or …
The widely-used convolutional neural network and transformer treat the image as a grid or …
Scaling up your kernels to 31x31: Revisiting large kernel design in cnns
We revisit large kernel design in modern convolutional neural networks (CNNs). Inspired by
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …
recent advances in vision transformers (ViTs), in this paper, we demonstrate that using a few …
Visual attention network
While originally designed for natural language processing tasks, the self-attention
mechanism has recently taken various computer vision areas by storm. However, the 2D …
mechanism has recently taken various computer vision areas by storm. However, the 2D …
An effective CNN and Transformer complementary network for medical image segmentation
F Yuan, Z Zhang, Z Fang - Pattern Recognition, 2023 - Elsevier
The Transformer network was originally proposed for natural language processing. Due to
its powerful representation ability for long-range dependency, it has been extended for …
its powerful representation ability for long-range dependency, it has been extended for …
A convnet for the 2020s
The" Roaring 20s" of visual recognition began with the introduction of Vision Transformers
(ViTs), which quickly superseded ConvNets as the state-of-the-art image classification …
(ViTs), which quickly superseded ConvNets as the state-of-the-art image classification …