[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …
domains, partly because of its ability to learn from data and achieve impressive performance …
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
Deep long-tailed learning: A survey
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …
to train well-performing deep models from a large number of images that follow a long-tailed …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Robust test-time adaptation in dynamic scenarios
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with
only unlabeled test data streams. Most of the previous TTA methods have achieved great …
only unlabeled test data streams. Most of the previous TTA methods have achieved great …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Test-time classifier adjustment module for model-agnostic domain generalization
This paper presents a new algorithm for domain generalization (DG),\textit {test-time
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
A fourier-based framework for domain generalization
Modern deep neural networks suffer from performance degradation when evaluated on
testing data under different distributions from training data. Domain generalization aims at …
testing data under different distributions from training data. Domain generalization aims at …
Domain adaptation for medical image analysis: a survey
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …
from the domain shift problem caused by different distributions between source/reference …
Exact feature distribution matching for arbitrary style transfer and domain generalization
Arbitrary style transfer (AST) and domain generalization (DG) are important yet challenging
visual learning tasks, which can be cast as a feature distribution matching problem. With the …
visual learning tasks, which can be cast as a feature distribution matching problem. With the …