Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

Diff-retinex: Rethinking low-light image enhancement with a generative diffusion model

X Yi, H Xu, H Zhang, L Tang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In this paper, we rethink the low-light image enhancement task and propose a physically
explainable and generative diffusion model for low-light image enhancement, termed as Diff …

Spectral–spatial morphological attention transformer for hyperspectral image classification

SK Roy, A Deria, C Shah, JM Haut… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, convolutional neural networks (CNNs) have drawn significant attention for
the classification of hyperspectral images (HSIs). Due to their self-attention mechanism, the …

Spectral–spatial feature tokenization transformer for hyperspectral image classification

L Sun, G Zhao, Y Zheng, Z Wu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover
category. In the recent past, convolutional neural network (CNN)-based HSI classification …

Self-supervised learning in remote sensing: A review

Y Wang, CM Albrecht, NAA Braham… - IEEE Geoscience and …, 2022 - ieeexplore.ieee.org
In deep learning research, self-supervised learning (SSL) has received great attention,
triggering interest within both the computer vision and remote sensing communities. While …

SpectralFormer: Rethinking hyperspectral image classification with transformers

D Hong, Z Han, J Yao, L Gao, B Zhang… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) images are characterized by approximately contiguous spectral
information, enabling the fine identification of materials by capturing subtle spectral …

Multimodal fusion transformer for remote sensing image classification

SK Roy, A Deria, D Hong, B Rasti… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Vision transformers (ViTs) have been trending in image classification tasks due to their
promising performance when compared with convolutional neural networks (CNNs). As a …

Morphological transformation and spatial-logical aggregation for tree species classification using hyperspectral imagery

M Zhang, W Li, X Zhao, H Liu, R Tao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which
contribute to a more accurate identification of materials and land covers. However, most …

Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification

Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …