Pointcontrast: Unsupervised pre-training for 3d point cloud understanding
Arguably one of the top success stories of deep learning is transfer learning. The finding that
pre-training a network on a rich source set (eg, ImageNet) can help boost performance once …
pre-training a network on a rich source set (eg, ImageNet) can help boost performance once …
Gemnet: Universal directional graph neural networks for molecules
J Gasteiger, F Becker… - Advances in Neural …, 2021 - proceedings.neurips.cc
Effectively predicting molecular interactions has the potential to accelerate molecular
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …
Pure transformers are powerful graph learners
We show that standard Transformers without graph-specific modifications can lead to
promising results in graph learning both in theory and practice. Given a graph, we simply …
promising results in graph learning both in theory and practice. Given a graph, we simply …
Understanding and extending subgraph gnns by rethinking their symmetries
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which
model graphs as collections of subgraphs. So far, the design space of possible Subgraph …
model graphs as collections of subgraphs. So far, the design space of possible Subgraph …
Vector neurons: A general framework for so (3)-equivariant networks
Invariance and equivariance to the rotation group have been widely discussed in the 3D
deep learning community for pointclouds. Yet most proposed methods either use complex …
deep learning community for pointclouds. Yet most proposed methods either use complex …
Spatio-temporal self-supervised representation learning for 3d point clouds
To date, various 3D scene understanding tasks still lack practical and generalizable pre-
trained models, primarily due to the intricate nature of 3D scene understanding tasks and …
trained models, primarily due to the intricate nature of 3D scene understanding tasks and …
A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups
Symmetries and equivariance are fundamental to the generalization of neural networks on
domains such as images, graphs, and point clouds. Existing work has primarily focused on a …
domains such as images, graphs, and point clouds. Existing work has primarily focused on a …
Equivariant subgraph aggregation networks
Message-passing neural networks (MPNNs) are the leading architecture for deep learning
on graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it …
on graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it …
Weisfeiler and leman go machine learning: The story so far
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman
algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a …
algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a …
Theoretical guarantees for permutation-equivariant quantum neural networks
Despite the great promise of quantum machine learning models, there are several
challenges one must overcome before unlocking their full potential. For instance, models …
challenges one must overcome before unlocking their full potential. For instance, models …