Pointcontrast: Unsupervised pre-training for 3d point cloud understanding

S **e, J Gu, D Guo, CR Qi, L Guibas… - Computer Vision–ECCV …, 2020 - Springer
Arguably one of the top success stories of deep learning is transfer learning. The finding that
pre-training a network on a rich source set (eg, ImageNet) can help boost performance once …

Gemnet: Universal directional graph neural networks for molecules

J Gasteiger, F Becker… - Advances in Neural …, 2021 - proceedings.neurips.cc
Effectively predicting molecular interactions has the potential to accelerate molecular
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …

Pure transformers are powerful graph learners

J Kim, D Nguyen, S Min, S Cho… - Advances in Neural …, 2022 - proceedings.neurips.cc
We show that standard Transformers without graph-specific modifications can lead to
promising results in graph learning both in theory and practice. Given a graph, we simply …

Understanding and extending subgraph gnns by rethinking their symmetries

F Frasca, B Bevilacqua… - Advances in Neural …, 2022 - proceedings.neurips.cc
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which
model graphs as collections of subgraphs. So far, the design space of possible Subgraph …

Vector neurons: A general framework for so (3)-equivariant networks

C Deng, O Litany, Y Duan… - Proceedings of the …, 2021 - openaccess.thecvf.com
Invariance and equivariance to the rotation group have been widely discussed in the 3D
deep learning community for pointclouds. Yet most proposed methods either use complex …

Spatio-temporal self-supervised representation learning for 3d point clouds

S Huang, Y **e, SC Zhu, Y Zhu - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
To date, various 3D scene understanding tasks still lack practical and generalizable pre-
trained models, primarily due to the intricate nature of 3D scene understanding tasks and …

A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups

M Finzi, M Welling, AG Wilson - International conference on …, 2021 - proceedings.mlr.press
Symmetries and equivariance are fundamental to the generalization of neural networks on
domains such as images, graphs, and point clouds. Existing work has primarily focused on a …

Equivariant subgraph aggregation networks

B Bevilacqua, F Frasca, D Lim, B Srinivasan… - arxiv preprint arxiv …, 2021 - arxiv.org
Message-passing neural networks (MPNNs) are the leading architecture for deep learning
on graph-structured data, in large part due to their simplicity and scalability. Unfortunately, it …

Weisfeiler and leman go machine learning: The story so far

C Morris, Y Lipman, H Maron, B Rieck… - The Journal of Machine …, 2023 - dl.acm.org
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman
algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a …

Theoretical guarantees for permutation-equivariant quantum neural networks

L Schatzki, M Larocca, QT Nguyen, F Sauvage… - npj Quantum …, 2024 - nature.com
Despite the great promise of quantum machine learning models, there are several
challenges one must overcome before unlocking their full potential. For instance, models …