Long-range interacting quantum systems

N Defenu, T Donner, T Macrì, G Pagano, S Ruffo… - Reviews of Modern …, 2023 - APS
In this review recent investigations are summarized of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …

Many-body physics with individually controlled Rydberg atoms

A Browaeys, T Lahaye - Nature Physics, 2020 - nature.com
Recent decades have witnessed great developments in the field of quantum simulation—
where synthetic systems are built and studied to gain insight into complicated, many-body …

Realizing spin squeezing with Rydberg interactions in an optical clock

WJ Eckner, N Darkwah Oppong, A Cao, AW Young… - Nature, 2023 - nature.com
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying
quantum physics, combining precise single-particle control and detection with a range of …

Tools for quantum simulation with ultracold atoms in optical lattices

F Schäfer, T Fukuhara, S Sugawa, Y Takasu… - Nature Reviews …, 2020 - nature.com
After many years of development of the basic tools, quantum simulation with ultracold atoms
has now reached the level of maturity at which it can be used to investigate complex …

Probing site-resolved correlations in a spin system of ultracold molecules

L Christakis, JS Rosenberg, R Raj, S Chi… - Nature, 2023 - nature.com
Synthetic quantum systems with interacting constituents play an important role in quantum
information processing and in explaining fundamental phenomena in many-body physics …

Quantum simulation and computing with Rydberg-interacting qubits

M Morgado, S Whitlock - AVS Quantum Science, 2021 - pubs.aip.org
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …

Quantum computing with atomic qubits and Rydberg interactions: progress and challenges

M Saffman - Journal of Physics B: Atomic, Molecular and Optical …, 2016 - iopscience.iop.org
We present a review of quantum computation with neutral atom qubits. After an overview of
architectural options and approaches to preparing large qubit arrays we examine Rydberg …

A concise review of Rydberg atom based quantum computation and quantum simulation

X Wu, X Liang, Y Tian, F Yang, C Chen, YC Liu… - Chinese …, 2021 - iopscience.iop.org
Quantum information processing based on Rydberg atoms emerged as a promising
direction two decades ago. Recent experimental and theoretical progresses have shined …

Long-lived Bell states in an array of optical clock qubits

N Schine, AW Young, WJ Eckner, MJ Martin… - Nature Physics, 2022 - nature.com
The generation of long-lived entanglement in optical atomic clocks is one of the main goals
of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may …

High-fidelity control and entanglement of Rydberg-atom qubits

H Levine, A Keesling, A Omran, H Bernien, S Schwartz… - Physical review …, 2018 - APS
Individual neutral atoms excited to Rydberg states are a promising platform for quantum
simulation and quantum information processing. However, experimental progress to date …