Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] A gentle introduction to deep learning in medical image processing
This paper tries to give a gentle introduction to deep learning in medical image processing,
proceeding from theoretical foundations to applications. We first discuss general reasons for …
proceeding from theoretical foundations to applications. We first discuss general reasons for …
Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge
Purpose To advance research in the field of machine learning for MR image reconstruction
with an open challenge. Methods We provided participants with a dataset of raw k‐space …
with an open challenge. Methods We provided participants with a dataset of raw k‐space …
Raft: Recurrent all-pairs field transforms for optical flow
Z Teed, J Deng - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Abstract We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network
architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D …
architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D …
A variational perspective on solving inverse problems with diffusion models
Diffusion models have emerged as a key pillar of foundation models in visual domains. One
of their critical applications is to universally solve different downstream inverse tasks via a …
of their critical applications is to universally solve different downstream inverse tasks via a …
Learning to optimize: A primer and a benchmark
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …
develop optimization methods, aiming at reducing the laborious iterations of hand …
On instabilities of deep learning in image reconstruction and the potential costs of AI
Deep learning, due to its unprecedented success in tasks such as image classification, has
emerged as a new tool in image reconstruction with potential to change the field. In this …
emerged as a new tool in image reconstruction with potential to change the field. In this …
Learning a variational network for reconstruction of accelerated MRI data
Purpose To allow fast and high‐quality reconstruction of clinical accelerated multi‐coil MR
data by learning a variational network that combines the mathematical structure of …
data by learning a variational network that combines the mathematical structure of …
Modern regularization methods for inverse problems
Regularization methods are a key tool in the solution of inverse problems. They are used to
introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses …
introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses …
Total deep variation for linear inverse problems
Diverse inverse problems in imaging can be cast as variational problems composed of a
task-specific data fidelity term and a regularization term. In this paper, we propose a novel …
task-specific data fidelity term and a regularization term. In this paper, we propose a novel …
A neural-network-based convex regularizer for inverse problems
The emergence of deep-learning-based methods to solve image-reconstruction problems
has enabled a significant increase in quality. Unfortunately, these new methods often lack …
has enabled a significant increase in quality. Unfortunately, these new methods often lack …