Deep-learning seismology

SM Mousavi, GC Beroza - Science, 2022 - science.org
Seismic waves from earthquakes and other sources are used to infer the structure and
properties of Earth's interior. The availability of large-scale seismic datasets and the …

Physics-informed machine learning

GE Karniadakis, IG Kevrekidis, L Lu… - Nature Reviews …, 2021 - nature.com
Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …

Physics-informed machine learning: case studies for weather and climate modelling

K Kashinath, M Mustafa, A Albert… - … of the Royal …, 2021 - royalsocietypublishing.org
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …

PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain

H Gao, L Sun, JX Wang - Journal of Computational Physics, 2021 - Elsevier
Recently, the advent of deep learning has spurred interest in the development of physics-
informed neural networks (PINN) for efficiently solving partial differential equations (PDEs) …

[PDF][PDF] Integrating physics-based modeling with machine learning: A survey

J Willard, X Jia, S Xu, M Steinbach… - arxiv preprint arxiv …, 2020 - beiyulincs.github.io
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

Integrating scientific knowledge with machine learning for engineering and environmental systems

J Willard, X Jia, S Xu, M Steinbach, V Kumar - ACM Computing Surveys, 2022 - dl.acm.org
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

Deep learning for fluid velocity field estimation: A review

C Yu, X Bi, Y Fan - Ocean Engineering, 2023 - Elsevier
Deep learning technique, has made tremendous progress in fluid mechanics in recent
years, because of its mighty feature extraction capacity from complicated and massive fluid …

Enforcing analytic constraints in neural networks emulating physical systems

T Beucler, M Pritchard, S Rasp, J Ott, P Baldi… - Physical review …, 2021 - APS
Neural networks can emulate nonlinear physical systems with high accuracy, yet they may
produce physically inconsistent results when violating fundamental constraints. Here, we …

When physics meets machine learning: A survey of physics-informed machine learning

C Meng, S Seo, D Cao, S Griesemer, Y Liu - arxiv preprint arxiv …, 2022 - arxiv.org
Physics-informed machine learning (PIML), referring to the combination of prior knowledge
of physics, which is the high level abstraction of natural phenomenons and human …

Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM

A Chattopadhyay, P Hassanzadeh… - Nonlinear Processes …, 2020 - npg.copernicus.org
In this paper, the performance of three deep learning methods for predicting short-term
evolution and for reproducing the long-term statistics of a multi-scale spatio-temporal Lorenz …