Openscene: 3d scene understanding with open vocabularies

S Peng, K Genova, C Jiang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a
model for a single task with supervision. We propose OpenScene, an alternative approach …

Rethinking range view representation for lidar segmentation

L Kong, Y Liu, R Chen, Y Ma, X Zhu… - Proceedings of the …, 2023 - openaccess.thecvf.com
LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point-
or voxel-based methods as they often yield better performance than the traditional range …

Robo3d: Towards robust and reliable 3d perception against corruptions

L Kong, Y Liu, X Li, R Chen, W Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
The robustness of 3D perception systems under natural corruptions from environments and
sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets …

Contrastive boundary learning for point cloud segmentation

L Tang, Y Zhan, Z Chen, B Yu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Point cloud segmentation is fundamental in understanding 3D environments. However,
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …

Lasermix for semi-supervised lidar semantic segmentation

L Kong, J Ren, L Pan, Z Liu - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Densely annotating LiDAR point clouds is costly, which often restrains the scalability of fully-
supervised learning methods. In this work, we study the underexplored semi-supervised …

Language-grounded indoor 3d semantic segmentation in the wild

D Rozenberszki, O Litany, A Dai - European Conference on Computer …, 2022 - Springer
Recent advances in 3D semantic segmentation with deep neural networks have shown
remarkable success, with rapid performance increase on available datasets. However …

Mask3d: Mask transformer for 3d semantic instance segmentation

J Schult, F Engelmann, A Hermans… - … on Robotics and …, 2023 - ieeexplore.ieee.org
Modern 3D semantic instance segmentation approaches predominantly rely on specialized
voting mechanisms followed by carefully designed geometric clustering techniques. Building …

Polarmix: A general data augmentation technique for lidar point clouds

A **ao, J Huang, D Guan, K Cui… - Advances in Neural …, 2022 - proceedings.neurips.cc
LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously,
capture precise geometry of the surrounding environment and are crucial to many …

Advancements in point cloud data augmentation for deep learning: A survey

Q Zhu, L Fan, N Weng - Pattern Recognition, 2024 - Elsevier
Deep learning (DL) has become one of the mainstream and effective methods for point
cloud analysis tasks such as detection, segmentation and classification. To reduce …

Multi-modal data-efficient 3d scene understanding for autonomous driving

L Kong, X Xu, J Ren, W Zhang, L Pan… - … on Pattern Analysis …, 2025 - ieeexplore.ieee.org
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous
driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully …