Openscene: 3d scene understanding with open vocabularies
Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a
model for a single task with supervision. We propose OpenScene, an alternative approach …
model for a single task with supervision. We propose OpenScene, an alternative approach …
Rethinking range view representation for lidar segmentation
LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point-
or voxel-based methods as they often yield better performance than the traditional range …
or voxel-based methods as they often yield better performance than the traditional range …
Robo3d: Towards robust and reliable 3d perception against corruptions
The robustness of 3D perception systems under natural corruptions from environments and
sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets …
sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets …
Contrastive boundary learning for point cloud segmentation
Point cloud segmentation is fundamental in understanding 3D environments. However,
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …
Lasermix for semi-supervised lidar semantic segmentation
Densely annotating LiDAR point clouds is costly, which often restrains the scalability of fully-
supervised learning methods. In this work, we study the underexplored semi-supervised …
supervised learning methods. In this work, we study the underexplored semi-supervised …
Language-grounded indoor 3d semantic segmentation in the wild
Recent advances in 3D semantic segmentation with deep neural networks have shown
remarkable success, with rapid performance increase on available datasets. However …
remarkable success, with rapid performance increase on available datasets. However …
Mask3d: Mask transformer for 3d semantic instance segmentation
Modern 3D semantic instance segmentation approaches predominantly rely on specialized
voting mechanisms followed by carefully designed geometric clustering techniques. Building …
voting mechanisms followed by carefully designed geometric clustering techniques. Building …
Polarmix: A general data augmentation technique for lidar point clouds
LiDAR point clouds, which are usually scanned by rotating LiDAR sensors continuously,
capture precise geometry of the surrounding environment and are crucial to many …
capture precise geometry of the surrounding environment and are crucial to many …
Advancements in point cloud data augmentation for deep learning: A survey
Deep learning (DL) has become one of the mainstream and effective methods for point
cloud analysis tasks such as detection, segmentation and classification. To reduce …
cloud analysis tasks such as detection, segmentation and classification. To reduce …
Multi-modal data-efficient 3d scene understanding for autonomous driving
Efficient data utilization is crucial for advancing 3D scene understanding in autonomous
driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully …
driving, where reliance on heavily human-annotated LiDAR point clouds challenges fully …