Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Information retrieval: recent advances and beyond
This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain …
utilized in the first and second stages of the typical information retrieval processing chain …
Tool learning with large language models: A survey
Recently, tool learning with large language models (LLMs) has emerged as a promising
paradigm for augmenting the capabilities of LLMs to tackle highly complex problems …
paradigm for augmenting the capabilities of LLMs to tackle highly complex problems …
Biases in large language models: origins, inventory, and discussion
In this article, we introduce and discuss the pervasive issue of bias in the large language
models that are currently at the core of mainstream approaches to Natural Language …
models that are currently at the core of mainstream approaches to Natural Language …
MTEB: Massive text embedding benchmark
Text embeddings are commonly evaluated on a small set of datasets from a single task not
covering their possible applications to other tasks. It is unclear whether state-of-the-art …
covering their possible applications to other tasks. It is unclear whether state-of-the-art …
One embedder, any task: Instruction-finetuned text embeddings
We introduce INSTRUCTOR, a new method for computing text embeddings given task
instructions: every text input is embedded together with instructions explaining the use case …
instructions: every text input is embedded together with instructions explaining the use case …
Dense text retrieval based on pretrained language models: A survey
Text retrieval is a long-standing research topic on information seeking, where a system is
required to return relevant information resources to user's queries in natural language. From …
required to return relevant information resources to user's queries in natural language. From …
Promptagator: Few-shot dense retrieval from 8 examples
Much recent research on information retrieval has focused on how to transfer from one task
(typically with abundant supervised data) to various other tasks where supervision is limited …
(typically with abundant supervised data) to various other tasks where supervision is limited …
Colbertv2: Effective and efficient retrieval via lightweight late interaction
Neural information retrieval (IR) has greatly advanced search and other knowledge-
intensive language tasks. While many neural IR methods encode queries and documents …
intensive language tasks. While many neural IR methods encode queries and documents …
Context-faithful prompting for large language models
Large language models (LLMs) encode parametric knowledge about world facts and have
shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on …
shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on …
[Књига][B] Pretrained transformers for text ranking: Bert and beyond
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in
response to a query. Although the most common formulation of text ranking is search …
response to a query. Although the most common formulation of text ranking is search …