Information retrieval: recent advances and beyond

KA Hambarde, H Proenca - IEEE Access, 2023 - ieeexplore.ieee.org
This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain …

Tool learning with large language models: A survey

C Qu, S Dai, X Wei, H Cai, S Wang, D Yin, J Xu… - Frontiers of Computer …, 2025 - Springer
Recently, tool learning with large language models (LLMs) has emerged as a promising
paradigm for augmenting the capabilities of LLMs to tackle highly complex problems …

Biases in large language models: origins, inventory, and discussion

R Navigli, S Conia, B Ross - ACM Journal of Data and Information …, 2023 - dl.acm.org
In this article, we introduce and discuss the pervasive issue of bias in the large language
models that are currently at the core of mainstream approaches to Natural Language …

MTEB: Massive text embedding benchmark

N Muennighoff, N Tazi, L Magne, N Reimers - arxiv preprint arxiv …, 2022 - arxiv.org
Text embeddings are commonly evaluated on a small set of datasets from a single task not
covering their possible applications to other tasks. It is unclear whether state-of-the-art …

One embedder, any task: Instruction-finetuned text embeddings

H Su, W Shi, J Kasai, Y Wang, Y Hu… - arxiv preprint arxiv …, 2022 - arxiv.org
We introduce INSTRUCTOR, a new method for computing text embeddings given task
instructions: every text input is embedded together with instructions explaining the use case …

Dense text retrieval based on pretrained language models: A survey

WX Zhao, J Liu, R Ren, JR Wen - ACM Transactions on Information …, 2024 - dl.acm.org
Text retrieval is a long-standing research topic on information seeking, where a system is
required to return relevant information resources to user's queries in natural language. From …

Promptagator: Few-shot dense retrieval from 8 examples

Z Dai, VY Zhao, J Ma, Y Luan, J Ni, J Lu… - arxiv preprint arxiv …, 2022 - arxiv.org
Much recent research on information retrieval has focused on how to transfer from one task
(typically with abundant supervised data) to various other tasks where supervision is limited …

Colbertv2: Effective and efficient retrieval via lightweight late interaction

K Santhanam, O Khattab, J Saad-Falcon… - arxiv preprint arxiv …, 2021 - arxiv.org
Neural information retrieval (IR) has greatly advanced search and other knowledge-
intensive language tasks. While many neural IR methods encode queries and documents …

Context-faithful prompting for large language models

W Zhou, S Zhang, H Poon, M Chen - arxiv preprint arxiv:2303.11315, 2023 - arxiv.org
Large language models (LLMs) encode parametric knowledge about world facts and have
shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on …

[Књига][B] Pretrained transformers for text ranking: Bert and beyond

J Lin, R Nogueira, A Yates - 2022 - books.google.com
The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in
response to a query. Although the most common formulation of text ranking is search …