State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques

R Wazirali, E Yaghoubi, MSS Abujazar… - Electric power systems …, 2023 - Elsevier
Forecasting renewable energy efficiency significantly impacts system management and
operation because more precise forecasts mean reduced risk and improved stability and …

A review of wind speed and wind power forecasting with deep neural networks

Y Wang, R Zou, F Liu, L Zhang, Q Liu - Applied energy, 2021 - Elsevier
The use of wind power, a pollution-free and renewable form of energy, to generate electricity
has attracted increasing attention. However, intermittent electricity generation resulting from …

[HTML][HTML] A review of green artificial intelligence: Towards a more sustainable future

V Bolón-Canedo, L Morán-Fernández, B Cancela… - Neurocomputing, 2024 - Elsevier
Green artificial intelligence (AI) is more environmentally friendly and inclusive than
conventional AI, as it not only produces accurate results without increasing the …

Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review

M Kaveh, MS Mesgari - Neural Processing Letters, 2023 - Springer
The learning process and hyper-parameter optimization of artificial neural networks (ANNs)
and deep learning (DL) architectures is considered one of the most challenging machine …

Deep learning for time series forecasting: a survey

JF Torres, D Hadjout, A Sebaa, F Martínez-Álvarez… - Big data, 2021 - liebertpub.com
Time series forecasting has become a very intensive field of research, which is even
increasing in recent years. Deep neural networks have proved to be powerful and are …

Load forecasting techniques for power system: Research challenges and survey

N Ahmad, Y Ghadi, M Adnan, M Ali - IEEE Access, 2022 - ieeexplore.ieee.org
The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy …

A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer

A Altan, S Karasu, E Zio - Applied Soft Computing, 2021 - Elsevier
Reliable and accurate wind speed forecasting (WSF) is fundamental for efficient exploitation
of wind power. In particular, high accuracy short-term WSF (ST-WSF) has a significant …

A review of very short-term wind and solar power forecasting

R Tawn, J Browell - Renewable and Sustainable Energy Reviews, 2022 - Elsevier
Installed capacities of wind and solar power have grown rapidly over recent years, and the
pool of literature on very short-term (minutes-to hours-ahead) wind and solar forecasting has …

Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks

S Ghimire, ZM Yaseen, AA Farooque, RC Deo… - Scientific Reports, 2021 - nature.com
Streamflow (Q flow) prediction is one of the essential steps for the reliable and robust water
resources planning and management. It is highly vital for hydropower operation, agricultural …

Near real-time wind speed forecast model with bidirectional LSTM networks

LP Joseph, RC Deo, R Prasad, S Salcedo-Sanz… - Renewable Energy, 2023 - Elsevier
Wind is an important source of renewable energy, often used to provide clean electricity to
remote areas. For optimal extraction of this energy source, there is a need for an accurate …