A unifying review of deep and shallow anomaly detection
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …
the art in detection performance on complex data sets, such as large collections of images or …
Adbench: Anomaly detection benchmark
Given a long list of anomaly detection algorithms developed in the last few decades, how do
they perform with regard to (i) varying levels of supervision,(ii) different types of anomalies …
they perform with regard to (i) varying levels of supervision,(ii) different types of anomalies …
React: Out-of-distribution detection with rectified activations
Abstract Out-of-distribution (OOD) detection has received much attention lately due to its
practical importance in enhancing the safe deployment of neural networks. One of the …
practical importance in enhancing the safe deployment of neural networks. One of the …
Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows
D Gudovskiy, S Ishizaka… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised anomaly detection with localization has many practical applications when
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …
On the importance of gradients for detecting distributional shifts in the wild
R Huang, A Geng, Y Li - Advances in Neural Information …, 2021 - proceedings.neurips.cc
Detecting out-of-distribution (OOD) data has become a critical component in ensuring the
safe deployment of machine learning models in the real world. Existing OOD detection …
safe deployment of machine learning models in the real world. Existing OOD detection …
A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges
Machine learning models often encounter samples that are diverged from the training
distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently …
distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently …
Why normalizing flows fail to detect out-of-distribution data
Detecting out-of-distribution (OOD) data is crucial for robust machine learning systems.
Normalizing flows are flexible deep generative models that often surprisingly fail to …
Normalizing flows are flexible deep generative models that often surprisingly fail to …
Unknown-aware object detection: Learning what you don't know from videos in the wild
Building reliable object detectors that can detect out-of-distribution (OOD) objects is critical
yet underexplored. One of the key challenges is that models lack supervision signals from …
yet underexplored. One of the key challenges is that models lack supervision signals from …
Understanding failures in out-of-distribution detection with deep generative models
Deep generative models (DGMs) seem a natural fit for detecting out-of-distribution (OOD)
inputs, but such models have been shown to assign higher probabilities or densities to OOD …
inputs, but such models have been shown to assign higher probabilities or densities to OOD …
Rankfeat: Rank-1 feature removal for out-of-distribution detection
The task of out-of-distribution (OOD) detection is crucial for deploying machine learning
models in real-world settings. In this paper, we observe that the singular value distributions …
models in real-world settings. In this paper, we observe that the singular value distributions …