Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Machine learning for molecular simulation
Machine learning (ML) is transforming all areas of science. The complex and time-
consuming calculations in molecular simulations are particularly suitable for an ML …
consuming calculations in molecular simulations are particularly suitable for an ML …
DeePMD-kit v2: A software package for deep potential models
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …
simulations using machine learning potentials known as Deep Potential (DP) models. This …
Machine learning for electronically excited states of molecules
Electronically excited states of molecules are at the heart of photochemistry, photophysics,
as well as photobiology and also play a role in material science. Their theoretical description …
as well as photobiology and also play a role in material science. Their theoretical description …
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …
efficiency of conventional force fields. However, current machine-learned force fields …
Quantum chemical accuracy from density functional approximations via machine learning
Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry,
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …
but accuracies for many molecules are limited to 2-3 kcal⋅ mol− 1 with presently-available …
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …