Gaussian process regression for materials and molecules

VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …

Four generations of high-dimensional neural network potentials

J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …

[HTML][HTML] DeePMD-kit v2: A software package for deep potential models

J Zeng, D Zhang, D Lu, P Mo, Z Li, Y Chen… - The Journal of …, 2023 - pubs.aip.org
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …

A Euclidean transformer for fast and stable machine learned force fields

JT Frank, OT Unke, KR Müller, S Chmiela - Nature Communications, 2024 - nature.com
Recent years have seen vast progress in the development of machine learned force fields
(MLFFs) based on ab-initio reference calculations. Despite achieving low test errors, the …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …

Combining machine learning and computational chemistry for predictive insights into chemical systems

JA Keith, V Vassilev-Galindo, B Cheng… - Chemical …, 2021 - ACS Publications
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …

Machine learning force fields

OT Unke, S Chmiela, HE Sauceda… - Chemical …, 2021 - ACS Publications
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …

SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects

OT Unke, S Chmiela, M Gastegger, KT Schütt… - Nature …, 2021 - nature.com
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Neural network potentials: A concise overview of methods

E Kocer, TW Ko, J Behler - Annual review of physical chemistry, 2022 - annualreviews.org
In the past two decades, machine learning potentials (MLPs) have reached a level of
maturity that now enables applications to large-scale atomistic simulations of a wide range …