A survey on deep-learning-based lidar 3d object detection for autonomous driving
LiDAR is a commonly used sensor for autonomous driving to make accurate, robust, and fast
decision-making when driving. The sensor is used in the perception system, especially …
decision-making when driving. The sensor is used in the perception system, especially …
Transfusion: Robust lidar-camera fusion for 3d object detection with transformers
LiDAR and camera are two important sensors for 3D object detection in autonomous driving.
Despite the increasing popularity of sensor fusion in this field, the robustness against inferior …
Despite the increasing popularity of sensor fusion in this field, the robustness against inferior …
Bevfusion: A simple and robust lidar-camera fusion framework
Fusing the camera and LiDAR information has become a de-facto standard for 3D object
detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to …
detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to …
Unifying voxel-based representation with transformer for 3d object detection
In this work, we present a unified framework for multi-modality 3D object detection, named
UVTR. The proposed method aims to unify multi-modality representations in the voxel space …
UVTR. The proposed method aims to unify multi-modality representations in the voxel space …
Bevdet: High-performance multi-camera 3d object detection in bird-eye-view
J Huang, G Huang, Z Zhu, Y Ye, D Du - arxiv preprint arxiv:2112.11790, 2021 - arxiv.org
Autonomous driving perceives its surroundings for decision making, which is one of the most
complex scenarios in visual perception. The success of paradigm innovation in solving the …
complex scenarios in visual perception. The success of paradigm innovation in solving the …
Bevdet4d: Exploit temporal cues in multi-camera 3d object detection
J Huang, G Huang - arxiv preprint arxiv:2203.17054, 2022 - arxiv.org
Single frame data contains finite information which limits the performance of the existing
vision-based multi-camera 3D object detection paradigms. For fundamentally pushing the …
vision-based multi-camera 3D object detection paradigms. For fundamentally pushing the …
Fcos3d: Fully convolutional one-stage monocular 3d object detection
Monocular 3D object detection is an important task for autonomous driving considering its
advantage of low cost. It is much more challenging than conventional 2D cases due to its …
advantage of low cost. It is much more challenging than conventional 2D cases due to its …
Embracing single stride 3d object detector with sparse transformer
In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to
input scene size is significantly smaller compared to 2D detection cases. Overlooking this …
input scene size is significantly smaller compared to 2D detection cases. Overlooking this …
Polarformer: Multi-camera 3d object detection with polar transformer
Abstract 3D object detection in autonomous driving aims to reason “what” and “where” the
objects of interest present in a 3D world. Following the conventional wisdom of previous 2D …
objects of interest present in a 3D world. Following the conventional wisdom of previous 2D …
Focalformer3d: focusing on hard instance for 3d object detection
False negatives (FN) in 3D object detection, eg, missing predictions of pedestrians, vehicles,
or other obstacles, can lead to potentially dangerous situations in autonomous driving. While …
or other obstacles, can lead to potentially dangerous situations in autonomous driving. While …